Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermodynamic model for the solubility of Ba(SeO$$_{4}$$, SO$$_{4}$$) precipitates

Rai, D.*; Felmy, A. R.*; Moore, D. A.*; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi*

Radiochimica Acta, 102(8), p.711 - 721, 2014/08

 Times Cited Count:2 Percentile:16.44(Chemistry, Inorganic & Nuclear)

The solubility of Ba(SeO$$_{4}$$, SO$$_{4}$$) precipitates was determined as a function of the BaSeO$$_{4}$$ mole fractions, ranging from 0.0015 to 0.3830, and time with an equilibration period extending to as long as 302 days. Equilibrium/steady state conditions in this system are reached in $$leq$$ 65 days. Pitzer's ion interaction model was used to calculate solid and aqueous phase activity coefficients. Thermodynamic analyses showed that the data do not satisfy Gibbs-Duhem equation, thereby demonstrating that a single-solid solution phase does not control both the selenate and sulfate concentrations. Our extensive data with [Ba], [SeO$$_{4}$$], and [SO$$_{4}$$] can be explained with the formation of an ideal BaSeO$$_{4}$$ solid solution phase that controls the selenium concentrations and a slightly disordered/less-crystalline BaSO$$_{4}$$(s) that controls the sulfate concentrations. In these experiments the BaSO$$_{4}$$ component of the solid solution phase never reaches thermodynamic equilibrium with the aqueous phase. Thermodynamic interpretations of the data show that both the ideal BaSeO$$_{4}$$ solid solution phase and less-crystalline BaSO$$_{4}$$(s) phase are in equilibrium with each other in the entire range of BaSeO$$_{4}$$ mole fractions investigated in this study.

Journal Articles

Thermodynamic model for the solubility of BaSeO$$_{4}$$(cr) in the aqueous Ba$$^{2+}$$-SeO$$_{4}$$$$^{2-}$$-Na$$^{+}$$-H$$^{+}$$-OH$$^{-}$$-H$$_{2}$$O system; Extending to high selenate concentrations

Rai, D.*; Felmy, A. R.*; Moore, D. A.*; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi*

Radiochimica Acta, 102(9), p.817 - 830, 2014/04

 Times Cited Count:1 Percentile:8.88(Chemistry, Inorganic & Nuclear)

The aqueous solubility of BaSeO$$_{4}$$(cr) was studied in Na$$_{2}$$SeO$$_{4}$$ solutions ranging in concentration from 0.0001 to 4.1 mol.kg$$^{-1}$$ and maintained in a N$$_{2}$$ atmosphere at room temperature (296 $$pm$$ 2 K). The studies were conducted from both the undersaturation and oversaturation directions, with equilibration periods ranging from 3 to 596 days. The equilibrium in this system was reached rather rapidly ($$leq$$ 3 days). The SIT and Pitzer's ion-interaction models were used to interpret these data and the predictions based on both of these models agreed closely with the experimental data.

JAEA Reports

Thermodynamic Date for Predicting Concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in Geologic Environments

Rai, D.*; Rao, L.*; Weger, H. T.*; Felmy, A. R.*; Choppin, G. R.*; Yui, Mikazu

JNC TN8400 99-009, 115 Pages, 1999/01

JNC-TN8400-99-009.pdf:5.19MB

This report provides thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(IV) species was lacking, the data were selected based on chemical analogy to other tetravalent actinides. ln this study, the Pitzer ion-interaction model is used to extrapolate thermodynamic constants to zero ionic strength at 25$$^{circ}$$C.

3 (Records 1-3 displayed on this page)
  • 1