Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of heterometallic cooperativity of iron and copper active sites on electrocatalytic oxygen reduction kinetics

Kato, Masaru*; Fujibayashi, Natsuki*; Abe, Daiki*; Matsubara, Naohiro*; Yasuda, Satoshi; Yagi, Ichizo*

ACS Catalysis, 11(4), p.2356 - 2365, 2021/02

 Times Cited Count:37 Percentile:89.44(Chemistry, Physical)

Fe-N-C oxygen reduction reaction catalyst is a key materials in polymer electrolyte fuel cell. However, the many Fe-N-C electrocatalysts still suffer from product selectivity due to the production of H$$_{2}$$O$$_{2}$$ as the byproduct. In this work, we synthesized an ORR electrocatalyst of Cu$$^{-}$$, Fe$$^{-}$$, and N-doped carbon nanotubes. This heterobimetallic catalyst showed the selective four electron reduction of O$$_{2}$$ to H$$_{2}$$O. Kinetic analysis of the electrocatalytic ORR and hydrogen peroxide reduction reaction in acidic media revealed that Cu, Fe-N-doped catalyst showed two orders of magnitude higher rate constants for the direct four electron reduction of O$$_{2}$$ to H$$_{2}$$O than those for the two electron reduction of O$$_{2}$$ to H$$_{2}$$O$$_{2}$$, whereas a monometallic Fe-N-doped catalyst showed the same order of magnitude, indicating that the heterometallic cooperativity had a drastic impact on the ORR kinetics.

1 (Records 1-1 displayed on this page)
  • 1