Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Omae, Akiomi*; Kimura, Kenji; et al.
Dai-36-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.90 - 92, 2025/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Yamamoto, Keisuke; Nakagawa, Takuya; Shimojo, Hiroto; Kijima, Jun; Miura, Daiya; Onose, Yoshihiko*; Namba, Koji*; Uchida, Hiroaki*; Sakamoto, Kazuhiko*; Ono, Chika*; et al.
JAEA-Technology 2024-019, 211 Pages, 2025/02
The uranium enrichment facilities at the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency (JAEA) were constructed sequentially to develop uranium enrichment technology with centrifugal separation method. The developed technologies were transferred to Japan Nuclear Fuel Limited until 2001. And the original purpose has been achieved. Wastewater Treatment Facility, one of the uranium enrichment facilities, was constructed in 1976 to treat radioactive liquid waste generated at the facilities, and it finished the role in 2008. In accordance with the Medium/Long-Term Management Plan of JAEA Facilities, interior equipment installed in this facility had been dismantled and removed since November 2021 to August 2023. This report summarizes the findings obtained through the work related to the contamination inspection methods cancellation the controlled area of Wastewater Treatment Facility from September 2023 to March 2024.
Abe, Yosuke; Tsuru, Tomohito; Fujita, Yohei*; Otomo, Masahide*; Sasaki, Taisuke*; Yamashita, Shinichiro; Okubo, Nariaki; Ukai, Shigeharu
Journal of Nuclear Materials, 606, p.155606_1 - 155606_12, 2025/02
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)We investigated the effect of Al addition on the formation of phase in Fe-Cr-Al model alloys by thermal aging. The Vickers hardness tests and a machine learning model indicate that the formation of the
phase is promoted by low Al additions and suppressed by high Al additions. First-principles calculations, which indicate that Cr-Al-vacancy pairs are more stable than Cr-Cr pairs and that including Al atoms during
phase nucleation may be energetically advantageous. On the other hand, the formation of Al-Al pairs was very unstable. The formation of Al-Al pairs near the interface can be avoided when the amount of Al addition is small. However, it is inevitable when the amount of Al addition is significant, leading to the instability of the
phase.
Wakasa, Sachi*; Ishiyama, Tatsuya*; Hirouchi, Daisuke*; Matta, Nobuhisa*; Fujita, Natsuko; Echigo, Tomoo*
Geomorphology, 468, p.109497_1 - 109497_8, 2025/01
Times Cited Count:0 Percentile:0.00(Geography, Physical)To estimate long-term rates of coastal uplift along the northern Pacific coast of Northeast Japan, we determined the surface exposure ages of marine and fluvial terraces based on terrestrial in situ cosmogenic radionuclide dating of exposed bedrock surfaces. Based on reinterpretation of marine and fluvial terraces, we collected samples from the northern and southern Sanriku coast. The surface exposure ages from Be concentrations in quartz calculated from the measured
Be/
Be ratios commonly suggest middle to late Pleistocene ages for the marine and fluvial terraces and slow coastal uplift rates at intermediate timescales. The results demonstrate different styles of crustal strain accommodation in the northern Northeast Japan arc above the subducting Pacific plate.
Suyama, Kenya; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Shimada, Kazuya; Fujita, Tatsuya; Ueki, Taro; Nguyen, H.
JAEA-Conf 2024-001, 40 Pages, 2024/07
The 12th International Conference on Nuclear Criticality Safety (ICNC2023) was held from October 1 to October 6, 2023, at the Sendai International Center (Aobayama, Aoba-ku, Sendai, Miyagi-prefecture 980-0856, Japan), organized by Japan Atomic Energy Agency (JAEA) and co-organized by the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ) and the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA). 224 presentations passed peer review and 273 technical session registrations, bringing the total number of registered participants to 289, including accompanying persons. Technical tours were also conducted to i) Fukushima Daiichi Nuclear Power Station of TEPCO holdings and Interim Storage Facility Information Center, ii) Nuclear Science Research Institute of JAEA (STACY Renewable Reactor and FCA), iii) NanoTerasu of Tohoku University (synchrotron radiation facility) and Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. This report summarizes the conference and compiles the papers that were presented and agreed to be published in the Proceedings.
Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Okamura, Shigeki; Miyazaki, Masashi; Miyagawa, Takayuki; Uchita, Masato*; Hirayama, Tomoyuki*; Somaki, Takahiro*; Yukawa, Masaki*; Fukasawa, Tsuyoshi*; et al.
Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 10 Pages, 2024/07
To secure the seismic safety of the thin-walled mechanical components and piping under a severe design earthquake level, employing a three-dimensional (3D) seismic isolation system has been planned in a sodium-cooled fast reactor. The development results of the 3D isolation system have been reported in previous papers so far. Its update is reported in Part 7 to Part 9. Part 7 describes the overview of the development, the test plan of the isolation system in the assembled state of each element, and the performance of individual isolation elements. In part 8, the performance of the isolation device that each element was assembled into was investigated through loading tests. Part 9 reports analytical studies by an analysis model validated based on the insight of the test results.
Yamamoto, Tomohiko; Watakabe, Tomoyoshi; Miyazaki, Masashi; Okamura, Shigeki; Miyagawa, Takayuki; Yokoi, Shinobu*; Fukasawa, Tsuyoshi*; Fujita, Satoshi*
Mechanical Engineering Journal (Internet), 11(2), p.23-00393_1 - 23-00393_21, 2024/04
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Takahashi, Yuto*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; et al.
Dai-25-Kai AMS Shimpojiumu Hokokushu (Internet), 3 Pages, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.
Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Hirota, Noriaki; Nakano, Hiroko; Fujita, Yoshitaka; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Demura, Masahiko*; Kobayashi, Yoshinao*
The IV International Scientific Forum "Nuclear Science and Technologies"; AIP Conference Proceedings 3020, p.030007_1 - 030007_6, 2024/01
Dynamic strain aging (DSA) and intergranular stress corrosion cracking (intragranular SCC) occur in high temperature pressurized water simulating a boiling water reactor environment due to changes in dissolved oxygen (DO) content, respectively. In order to clearly understand the difference between these phenomena, the mechanism of their occurrence was summarized. As a result, it was found that DSA due to intragranular cracking occurred in SUS304 stainless steel at low DO 1 ppb, while DSA was suppressed at DO 100 to 8500 ppb due to the formation of oxide films on the surface. On the other hand, when DO was increased to 20000 ppb, the film was peeled from the matrix, O element diffused to the grain boundary of the matrix, resulting in intergranular SCC. These results are indicated that the optimum DO concentration must be adjusted to suppress crack initiation due to DSA and intergranular SCC.
Matsuno, Takashi*; Fujita, Taiki*; Matsuda, Tomoko*; Shibayama, Yuki; Hojo, Tomohiko*; Watanabe, Ikumu*
Journal of Materials Processing Technology, 322, p.118174_1 - 118174_16, 2023/12
Times Cited Count:8 Percentile:69.06(Engineering, Industrial)The impact of high stress triaxiality on work hardening in transformation-induced plasticity (TRIP) steel has been widely acknowledged, particularly through measurements of the austenite fraction. Understanding this TRIP behavior is crucial for predicting material fracture in press-forming processes. However, the actual flow stresses under high-stress-triaxiality conditions remain largely undetermined. To address this gap, we developed a new tensile testing method using tiny notched round bars to investigate stress-triaxiality-induced work hardening in TRIP steels. The specimens were analyzed using two-dimensional micrometry to allow finite element analyses to identify the flow stress. Additionally, we conducted in situ tensile tests in which their crystal lattice stresses were monitored using synchrotron X-ray diffraction (XRD) to realize mechanism analyses of the unexpected work-hardening behavior identified by the developed tensile testing method. Our combined approach revealed a mutual, unstable increase in the flow stress and stress triaxiality in the TRIP-aided bainitic ferrite steel, which reduced the hardening exponent coefficients and thus induced a higher stress triaxiality. In contrast, the TRIP-aided martensitic steel exhibited a weakening behavior, characterized by a significant decrease in the hardening exponent coefficients in the case of the sharpest notch. XRD analyses showed that microstructural heterogeneity led to an extraordinarily high hydrostatic stress in the austenite phase, accounting for these contrasting behaviors. This finding challenges the established consensus on TRIP steels and suggests the need for a revised framework for their application in press-forming, taking into account stress-triaxiality conditions.
Fukasawa, Tsuyoshi*; Hirayama, Tomoyuki*; Yokoi, Shinobu*; Hirota, Akihiko*; Somaki, Takahiro*; Yukawa, Masaki*; Miyagawa, Takayuki; Uchita, Masato*; Yamamoto, Tomohiko; Miyazaki, Masashi; et al.
Nihon Kikai Gakkai Rombunshu (Internet), 89(924), p.23-00023_1 - 23-00023_17, 2023/08
no abstracts in English
Fujita, Yoshitaka; Hu, X.*; Takeuchi, Tomoaki; Takeda, Ryoma; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; Hori, Junichi*; Suzuki, Tatsuya*; Suematsu, Hisayuki*; Ide, Hiroshi
KURNS Progress Report 2022, P. 110, 2023/07
no abstracts in English
Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.
Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06
Times Cited Count:2 Percentile:43.92(Instruments & Instrumentation)The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 (C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for
C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.
Yamamoto, Tomohiko; Watakabe, Tomoyoshi; Miyazaki, Masashi; Miyagawa, Takayuki*; Yokoi, Shinobu*; Okamura, Shigeki*; Fukasawa, Tsuyoshi*; Fujita, Satoshi*
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
Matsubara, Akihiro*; Fujita, Natsuko; Miyake, Masayasu; Ishii, Masahiro*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi; Jinno, Satoshi; Kimura, Kenji; et al.
JAEA-Conf 2022-002, p.55 - 62, 2023/03
We report the present status of the JAEA-AMS-TONO. Particularly, the destructions of varistors used in the beamline equipment will be presented. The cause of the destruction as well as implementation of the safety measures are mentioned.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Yamamoto, Yusuke; Kimura, Kenji; et al.
Dai-23-Kai AMS Shimpojiumu Hokokushu, p.1 - 4, 2022/12
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Yasuoka, Yumi*; Fujita, Hiroki; Tsuji, Tomoya; Tsujiguchi, Takakiyo*; Sasaki, Michiya*; Miyazaki, Tomoyuki*; Hashima, Shun*; Yasuda, Hiroshi*; Shimada, Kazumasa; Hirota, Seiko*
Hoken Butsuri (Internet), 57(3), p.146 - 155, 2022/12
no abstracts in English
Yamamoto, Takeshi; Fujita, Manami; Gogami, Toshiyuki*; Harada, Takeshi*; Hayakawa, Shuhei*; Hosomi, Kenji; Ichikawa, Yudai; Ishikawa, Yuji*; Kamata, K.*; Kanauchi, H.*; et al.
EPJ Web of Conferences, 271, p.03001_1 - 03001_5, 2022/11
Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English