Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishimura, Hiroki*; Kozuka, Mariko*; Fukuda, Akari*; Ishimura, Toyoho*; Amano, Yuki; Beppu, Hikari*; Miyakawa, Kazuya; Suzuki, Yohei*
Environmental Microbiology Reports (Internet), 15(3), p.197 - 205, 2023/06
Times Cited Count:1 Percentile:26.29(Environmental Sciences)The family Methanoperedenaceae archaea mediate anaerobic oxidation of methane (AOM). We newly developed a high-pressure laboratory incubation system and investigated groundwater from 214- and 249-m deep boreholes at Horonobe Underground Research Laboratory, Japan, where the high and low abundances of Methanoperedenaceae archaea have been revealed, respectively. We incubated the samples amended with or without amorphous Fe(III) and C-labelled methane at an in-situ pressure of 1.6 MPa. After three to seven-day incubation, AOM activities were not detected from the 249-m sample but from the 214-m sample. The AOM rates were 93.740.6 and 27.737.5 nM/day with and without Fe(III) amendment. Suspended particulates were not visible in the 249-m sample on the filter, while they were abundant and contained amorphous Fe(III) and Fe(III)-bearing phyllosilicates in the 214-m sample. This supports the in-situ activity of Fe(III)-dependent AOM in the deep subsurface borehole.
Ino, Kohei*; Hernsdorf, A. W.*; Konno, Yuta*; Kozuka, Mariko*; Yanagawa, Katsunori*; Kato, Shingo*; Sunamura, Michinari*; Hirota, Akinari*; Togo, Yoko*; Ito, Kazumasa*; et al.
ISME Journal, 12(1), p.31 - 47, 2018/01
Times Cited Count:52 Percentile:90.22(Ecology)In this study, we found the dominance ofanaerobic methane-oxidizing archaea in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock.
Ino, Kohei*; Konno, Yuta*; Kozuka, Mariko*; Hirota, Akinari*; Togo, Yoko*; Fukuda, Akari*; Komatsu, Daisuke*; Tsunogai, Urumu*; Tanabe, Akifumi*; Yamamoto, Satoshi*; et al.
Environmental Microbiology Reports (Internet), 8(2), p.285 - 294, 2016/04
Times Cited Count:29 Percentile:68.90(Environmental Sciences)To understand the subsurface biosphere, borehole investigation was conducted for 300-m deep granitic rocks at the Mizunami underground research laboratory, Japan. The initial biomass was the highest with the flourish of aerobic H-oxidizing Hydrogenophaga spp., whereas an uncultivated lineage of the phylum Nitrospirae became predominant after three years with decreasing biomass. The common occurrence of many species of Nitrospirae and Chlorobi phyla at the geographically distinct sites and the exclusive detection of their phylogenetically related environmental sequences from deep groundwaters and terrestrial hot springs, suggest that these bacteria are indigenous and potentially adapted to the deep terrestrial subsurface.
Suzuki, Yohei*; Konno, Yuta*; Fukuda, Akari*; Komatsu, Daisuke*; Hirota, Akinari*; Watanabe, Katsuaki*; Togo, Yoko*; Morikawa, Noritoshi*; Hagiwara, Hiroki; Aosai, Daisuke*; et al.
PLOS ONE (Internet), 9(12), p.e113063_1 - e113063_20, 2014/12
Times Cited Count:14 Percentile:35.38(Multidisciplinary Sciences)We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep groundwater of meteoric origin was collected from underground boreholes drilled into the Cretaceous Toki granite, central Japan. A large sulfur isotopic fractionation of 20-60 permil diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation ( 30 permil) is not indicative of methanogenesis. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low energy fluxes.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.
JAEA-Review 2013-018, 169 Pages, 2013/09
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Mizuno, Takashi; Aosai, Daisuke; Shingu, Shinya; Hagiwara, Hiroki; Yamamoto, Yuhei; Fukuda, Akari
Nihon Genshiryoku Gakkai Wabun Rombunshi, 12(1), p.89 - 102, 2013/03
no abstracts in English
Fukuda, Akari*; Hagiwara, Hiroki; Ishimura, Toyoho*; Kozuka, Mariko*; Ioka, Seiichiro*; Amano, Yuki; Tsunogai, Urumu*; Suzuki, Yohei*; Mizuno, Takashi
Microbial Ecology, 60(1), p.214 - 225, 2010/05
Times Cited Count:30 Percentile:64.20(Ecology)To better understand the geochemical and microbiological relationships, we characterized granitic groundwater collected from a 1,148 to 1,169 -m deep borehole interval at the Mizunami Underground Research Laboratory site, Japan, in 2005 and 2008. Geochemical analyses of the groundwater samples indicated that major electron acceptors, such as NO and SO, were not abundant, while dissolved organic carbon (not including organic acids), CH and H were moderately rich. The most common phylotypes were both related to spp., the cultivated members of which can utilize minor electron donors, such as aromatic and aliphatic hydrocarbons. Geomicrobiological results suggest that deep granitic groundwater has been stably colonized by spp. probably owing to the limitation of O, NO and organic acids.
Iwatsuki, Teruki; Mizuno, Takashi; Hagiwara, Hiroki; Shingu, Shinya; Omori, Kazuaki; Fukuda, Akari
no journal, ,
Multivariative analysis have carried out to estimate artificial hydrochemical impact during large underground facility construction. The calculation shows that the hydrochemical change of groundwater with time has caused by the change of mixing ratio among end-member water.
Shingu, Shinya; Hagiwara, Hiroki; Omori, Kazuaki; Fukuda, Akari; Tsuyuguchi, Koji; Iwatsuki, Teruki
no journal, ,
no abstracts in English
Hagiwara, Hiroki; Shingu, Shinya; Omori, Kazuaki; Fukuda, Akari; Iwatsuki, Teruki
no journal, ,
no abstracts in English
Fukuda, Akari; Iwatsuki, Teruki; Shingu, Shinya; Omori, Kazuaki; Hagiwara, Hiroki; Ito, Kazumasa*; Togo, Yoko*; Suzuki, Yohei*
no journal, ,
no abstracts in English
Ito, Kazumasa*; Togo, Yoko*; Hirota, Akinari*; Suzuki, Yohei*; Fukuda, Akari*; Omori, Kazuaki; Hasegawa, Takashi; Iwatsuki, Teruki
no journal, ,
Microbial metabolism and the chemical buffer capacity in deep groundwater were estimated at Mizunami underground research laboratory. The results show that sulfate reducing bacteria uses hydrogen gas. The sulfate consumption rate is important index to infer the redox buffer capacity in deep underground.
Konno, Yuta*; Fukuda, Akari; Kozuka, Mariko*; Komatsu, Daisuke*; Tsunogai, Urumu*; Aosai, Daisuke; Mizuno, Takashi; Suzuki, Yohei*
no journal, ,
Our knowledge of biogeochemical processes mediated in those associated with freshwater should be integrated. We collected the groundwater samples from 200 m to 1150 m depths below ground level at Mizunami Underground Research Laboratory located in central Japan. We measured the concentration and both hydrogen and carbon isotopic compositions of dissolved methane, total inorganic carbon (TIC) and molecular hydrogen. The origin of methane could be speculated to be not biogenic CO reduction or acetate fermentation but thermogenic or abiogenic. In contrast, C1/C2+C3 ratios supported biogenic methane production. The 300 m deep samples were enriched in hydrogen and acetate and depleted in sulfate, which is characteristic of acetogenesis. From these results, it is suggested that the production of acetate rather than methane could be dominant biogeochemical processes in the reducing portions of freshwater aquifers in granitic rocks.
Fukuda, Akari; Mizuno, Takashi; Aosai, Daisuke; Hagiwara, Hiroki; Yamamoto, Yuhei; Shingu, Shinya; Ito, Kazumasa*; Suzuki, Yohei*; Kozuka, Mariko*; Konno, Yuta*
no journal, ,
no abstracts in English
Mizuno, Takashi; Hagiwara, Hiroki; Aosai, Daisuke; Shingu, Shinya; Yamamoto, Yuhei; Fukuda, Akari
no journal, ,
no abstracts in English
Mizuno, Takashi; Aosai, Daisuke; Shingu, Shinya; Hagiwara, Hiroki; Yamamoto, Yuhei; Fukuda, Akari
no journal, ,
no abstracts in English
Fukuda, Akari*; Suzuki, Yohei*; Ito, Kazumasa*; Mizuno, Takashi; Amano, Yuki; Hagiwara, Hiroki; Hama, Katsuhiro
no journal, ,
This study was aimed to understand the control system and the process of redox system in deep groundwater. As the result of chemical study of groundwater, it is revealed that succniate was highly enriched in groundwater from Toki Formation (up to 81 mg/L). This result suggests that succinate is one of major electron donors that can fuel metabolic activities.
Togo, Yoko*; Suzuki, Yohei*; Fukuda, Akari; Mizuno, Takashi; Ito, Kazumasa*
no journal, ,
no abstracts in English
Omori, Kazuaki; Hama, Katsuhiro; Hagiwara, Hiroki; Shingu, Shinya; Fukuda, Akari; Iwatsuki, Teruki
no journal, ,
no abstracts in English
Nishimura, Shusaku*; Suzuki, Yohei*; Fukuda, Akari; Konno, Yuta*; Shuin, Kuniko*; Nagao, Seiya*
no journal, ,
no abstracts in English