Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 13th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 11 Pages, 2024/11
Our research objectives are to develop a VCS that utilizes radiative cooling to passively remove decay heat and residual heat from the RPV during expected and unexpected natural phenomena and accidents. To solve the back pressure problem around the inlet and outlet, it is necessary to minimize reliance on fluid actuation, such as water, air, etc., and to avoid using natural circulation or natural convection as much as possible to improve safety against external hazards. In this presentation, we present the structural concept of the proposed VCS integrated with the reactor building and report the results of the cooling performance evaluation based on the results of experimental and analytical studies conducted to date.
Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 17 Pages, 2023/04
The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.
Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi
Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10
A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.
Takamatsu, Kuniyoshi; Funatani, Shumpei*; Banno, Masaki*
no journal, ,
After Fukushima Daiichi nuclear disaster, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
no journal, ,
Our research objectives are to develop a VCS that utilizes radiative cooling to passively remove decay heat and residual heat from the RPV during expected and unexpected natural phenomena and accidents. To solve the back pressure problem around the inlet and outlet, it is necessary to minimize reliance on fluid actuation, such as water, air, etc., and to avoid using natural circulation or natural convection as much as possible to improve safety against external hazards. In this presentation, we present the structural concept of the proposed VCS integrated with the reactor building and report the results of the cooling performance evaluation based on the results of experimental and analytical studies conducted to date.