Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ohshima, Hiroyuki; Asayama, Tai; Furukawa, Tomohiro; Tanaka, Masaaki; Uchibori, Akihiro; Takata, Takashi; Seki, Akiyuki; Enuma, Yasuhiro
Journal of Nuclear Engineering and Radiation Science, 9(2), p.025001_1 - 025001_12, 2023/04
This paper describes the outline and development plan for ARKADIA to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source. ARKADIA will realize Artificial Intelligence (AI)-aided integrated numerical analysis to offer the best possible solutions for the design and operation of a nuclear plant, including optimization of safety equipment. State-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&D are integrated with AI. In the first phase of development, ARKADIA-Design and ARKADIA-Safety will be constructed individually, with the first target of sodium-cooled reactor. In a subsequent phase, everything will be integrated into a single entity applicable not only to advanced rectors with a variety of concepts, coolants, configurations, and output levels but also to existing light-water reactors.
Takai, Toshihide; Furukawa, Tomohiro; Watanabe, Shigeki*; Ishioka, Noriko*
Mechanical Engineering Journal (Internet), 9(4), p.21-00397_1 - 21-00397_11, 2022/08
For the mass production of astatine-211, a promising radiopharmaceutical for cancer treatment, the National Institute for Quantum and Radiological Science and Technology has proposed the innovative "Liquid Bismuth Target System." The target window in this system must be made from a material that resists the highly corrosive liquid bismuth environment. To meet this requirement, a promising target window material was selected in corrosion experiments performed in stagnant liquid bismuth. Based on knowledge of corrosion in liquid lead-bismuth eutectic gained during the development of fast reactors and accelerator-driven subcritical systems, experiments were carried out under saturated dissolved oxygen and low oxygen conditions, and the corrosion behaviors of the specimens were evaluated. The FeCrAl-alloy exhibited the most excellent corrosion resistance, followed by FeCrMo-alloy. Both materials are suitable candidates for the target window.
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Mechanical Engineering Journal (Internet), 8(4), p.20-00540_1 - 20-00540_11, 2021/08
In a core disruptive accident scenario, boron carbide, which is used as a control rod material, may melt below the melting temperature of stainless steel owing to the eutectic reaction with them. The eutectic mixture produced is assumed to extensively relocate in the degraded core, and this behavior plays an important role in significantly reducing the neutronic reactivity. However, these behaviors have never been simulated in previous severe accident analysis. To contribute to the improvement of the core disruptive accident analysis code, the thermophysical properties of the eutectic mixture in the solid state were measured, and regression equations that show the temperature (and boron carbide concentration) dependence are created.
Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 11 Pages, 2021/08
One of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors is eutectic reactions between boron carbide (BC) and stainless steel (SS) as well as its relocation. Such behaviors have never been simulated in CDA numerical analyses in the past, therefore it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study focuses on BC-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in a range from solid to liquid state. The physical model is developed for a CDA computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies conducted until 2019. Specific results in this paper are the validation of physical model describing BC-SS eutectic reaction in the CDA analysis code, SIMMER-III, through the numerical analysis of the BC-SS eutectic melting experiments in which a BC block was placed in a SS pool.
Ukai, Shigeharu; Kato, Shoichi; Furukawa, Tomohiro; Otsuka, Satoshi
Materials Science & Engineering A, 794, p.139863_1 - 139863_13, 2020/09
Times Cited Count:44 Percentile:94.84(Nanoscience & Nanotechnology)The FeCrAl-oxide dispersion strengthened (ODS) alloy is the promising cladding material for the accident-tolerant fuel (ATF) of the light water reactors (LWR). Ring-creep tests for FeCrAl-ODS alloy cladding were carried out at 973 K and 1273 K. The dislocation detachment stress from the dispersoid was derived by considering the dislocation-dispersoid elastic interaction and the dislocation relaxation effect by climb motion. When the applied stress exceeds the dislocation detachment stress, dislocations overcome the dispersoids with the reduced values of the stress exponent. When the stress is lower than the dislocation detachment stress, grain boundary sliding (GBS) is dominant factor for the low strain rate creep deformation at 1273 K. Based on those findings, new constitutive equations for creep deformation were constructed, which is applicable to low stress, low strain rate and high temperature conditions encountered at the reactor sever accident.
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 10 Pages, 2020/08
One of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors is eutectic reactions between boron carbide (BC) and stainless steel (SS) as well as its relocation. Such behaviors have never been simulated in CDA numerical analyses in the past, therefore it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study focuses on BC-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in a range from solid to liquid state. The physical model is developed for a severe accident computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies conducted until 2018. Specific results in this paper are boron concentration distributions of solidified BC-SS eutectic sample in the eutectic melting experiments, which would be used for the validation of the eutectic physical model implemented into the computer code.
Otsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Tachi, Yoshiaki; Kaito, Takeji; Hashidate, Ryuta; Kato, Shoichi; Furukawa, Tomohiro; Ito, Chikara; et al.
2018 GIF Symposium Proceedings (Internet), p.305 - 314, 2020/05
Oxide Dispersion Strengthened (ODS) steel has been developed worldwide as a high-strength and radiation-tolerant steel used for advanced nuclear system. Japan Atomic Energy Agency (JAEA) has been developing ODS steel as the primary candidate material of Sodium cooled Fast Reactor (SFR) high burn-up fuel cladding tube. Application of high burn-up fuel to SFR core can contribute to improvement of economical performance of SFR in conjunction with volume and hazardousness reduction of radioactive waste. This paper described the current status and future prospects of ODS tempered martensitic steel development in JAEA for SFR fuel application.
Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro
Nihon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00360_1 - 19-00360_13, 2020/03
It is necessary to simulate a eutectic melting reaction and relocation behavior of boron carbide (BC) as a control rod material and stainless steel (SS) during a core disruptive accident in an advanced sodium-cooled fast reactor designed in Japan because the BC-SS eutectic relocation behavior has a large uncertainty in the reactivity history based on a simple calculation. A physical model simulating the eutectic melting reaction and relocation was developed and implemented into a severe accident simulation code. The developed model must be validated by using test data. To validate the physical model, therefore, the visualization tests of SS-BC eutectic melting reaction was carried out by contacting SS melts of several kg with a BC pellet heated up to about 1500 C. The tests have shown the eutectic reaction visualization as well as freezing and relocation of the BC-SS eutectic in upper part of the solidified test piece due to the density separation. Post-test material analyses by using X-ray diffraction and transmission electron microscope techniques have indicated that FeB appeared at the BC-SS contact interface and (Fe,Cr)B at the top surface of the test piece. Glow discharge optical emission spectrometry has been applied to quantitative analysis of boron concentration distributions. The boron concentration was high at the upper surface and near the original position of the BC pellet.
Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro
Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09
Times Cited Count:1 Percentile:10.65(Nuclear Science & Technology)Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Nuclear Technology, 205(9), p.1164 - 1174, 2019/09
Times Cited Count:7 Percentile:60.64(Nuclear Science & Technology)Tamakuma, Yuki*; Yamada, Ryohei; Iwaoka, Kazuki*; Hosoda, Masahiro*; Kuroki, Tomohiro*; Mizuno, Hiroyuki*; Yamada, Koji*; Furukawa, Masahide*; Tokonami, Shinji*
Perspectives in Science (Internet), 12, p.100414_1 - 100414_4, 2019/09
In this study, a portable radioactive plume monitor using a silicon photodiode was developed for the detection of a radioactive plume (e.g. I, Cs and Cs) in an emergency situation. It was found that the background count rate was proportional to ambient dose equivalent rate and the detection limit for the monitor at 20 Sv h as an ambient dose equivalent rate was evaluated to be 187 Bq m using the ISO11929 method. These results suggest that the detection limit for the system can be decreased effectively by lead shielding with optimized thickness.
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.847 - 852, 2019/09
Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.418 - 427, 2019/09
Eutectic reactions between boron carbide (BC) and stainless steel (SS) as well as its relocation are one of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors. Since such behaviors have never been simulated in CDA numerical analyses, it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study is focusing on BC-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in the range from solid to liquid state. The physical model is developed for a severe accident computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies by 2017. Specific results in this paper is boron concentration distributions of solidified BC-SS eutectic sample in the eutectic melting experiments, which would be used for the validation of the eutectic physical model implemented into the computer code.
Yano, Yasuhide; Sekio, Yoshihiro; Tanno, Takashi; Kato, Shoichi; Inoue, Toshihiko; Oka, Hiroshi; Otsuka, Satoshi; Furukawa, Tomohiro; Uwaba, Tomoyuki; Kaito, Takeji; et al.
Journal of Nuclear Materials, 516, p.347 - 353, 2019/04
Times Cited Count:15 Percentile:85.31(Materials Science, Multidisciplinary)9Cr-ODS steel claddings consisting of tempered martensitic matrix, showed prominent creep rupture strength at 1000 C, which surpassed that of heat-resistant austenitic steels although creep rupture strength of tempered martensitic steels is generally lower than that of austenitic steels at high temperatures. The measured creep rupture strength of 9Cr-ODS steel claddings at 1000 C was higher than that from extrapolated creep rupture trend curves formulated using data at temperatures from 650 to 850 C. This superior strength seemed to be owing to transformation of the matrix from the -phase to the -phase. The transient burst strengths for 9Cr-ODS steel were much higher than those for 11Cr-ferritic/martensitic steel (PNC-FMS). Cumulative damage fraction analyses suggested that the life fraction rule can be used for the rupture life prediction of 9Cr-ODS steel and PNC-FMS claddings in the transient and accidental events with a certain accuracy.
Kondo, Hiroo*; Kanemura, Takuji*; Hirakawa, Yasushi; Furukawa, Tomohiro
Fusion Engineering and Design, 136(Part A), p.24 - 28, 2018/11
Times Cited Count:1 Percentile:11.24(Nuclear Science & Technology)In the IFMIF-EVEDA project, we designed and constructed the IFMIF-EVEDA Li Test Loop (ELTL), and we performed experiments to validate the stability of the Li target. This project required a diagnostic tool to be developed in order to examine the Li target; as such, we developed a unique laser-based method that we call the laser-probe method; this method combines a high-precision laser distance meter with a statistical data analysis method. Following the successful development of the laser-probe method, we proposes a long-distance-measurement of the laser probe method (long-distance LP method) as a diagnostics tool in off-beam conditions for IFMIF or the relevant neutron sources. In this study, the measurement uncertainty resulting from coherency of the laser in a long-distance-measurement has been verified by using stationary objects and a water jet simulating the liquid Li target.
Otsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji
Journal of Nuclear Materials, 505, p.44 - 53, 2018/07
Times Cited Count:2 Percentile:20.55(Materials Science, Multidisciplinary)A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in sodium bulk flow was set at 0.07 wt ppm in the calculation.
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Proceedings of 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) (CD-ROM), p.1007 - 1013, 2018/04
Kondo, Hiroo; Kanemura, Takuji*; Furukawa, Tomohiro; Hirakawa, Yasushi; Wakai, Eiichi; Knaster, J.*
Journal of Nuclear Engineering and Radiation Science, 3(4), p.041005_1 - 041005_11, 2017/10
A liquid-Li free-surface stream flowing at 15 m/s under a high vacuum of 10 Pa is to serve as a beam target (Li target) for the planned International Fusion Materials Irradiation Facility (IFMIF) or other intense fusion neutron sources. This study focuses on cavitation-like acoustic noise which was detected in a conduit downstream from the Li target. This noise was measured by using acoustic-emission (AE) sensors that were installed at several locations of the conduit via acoustic wave guides. As a result, we found that cavitation occurred only in a narrow area where the Li target impinged on the downstream conduit.
Nakajima, Kunihisa; Takai, Toshihide; Furukawa, Tomohiro; Osaka, Masahiko
Journal of Nuclear Materials, 491, p.183 - 189, 2017/08
Times Cited Count:8 Percentile:60.68(Materials Science, Multidisciplinary)One of the main chemical forms of cesium in the gas phase during severe accidents of light water reactor is expected to be cesium metaborate, CsBO, by thermodynamic equilibrium calculation considering reaction with boron. But accuracy of the thermodynamic data of gaseous metaborate, CsBO(g), has been judged as poor quality. Thus, Knudsen effusion mass spectrometric measurement of CsBO was carried out to obtain reliable thermodynamic data. The evaluated values of standard enthalpy of formation of CsBO(g), H(CsBO,g), by the 2nd and 3rd law treatments are -700.710.7 kJ/mol and -697.010.6 kJ/mol, respectively, and agree with each other within the errors, which suggests our data are reliable. Further, it was found that the existing data of the Gibbs energy function and the standard enthalpy of formation agreed well with the values evaluated in this study, which indicates the existing thermodynamic data are also reliable.