Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Turbulent generation of poloidal asymmetries of the electric potential in a tokamak

Donnel, P.*; Garbet, X.*; Sarazin, Y.*; Asahi, Yuichi; Wilczynski, F.*; Caschera, E.*; Dif-Pradalier, G.*; Ghendrih, P.*; Gillot, C.*

Plasma Physics and Controlled Fusion, 61(1), p.014003_1 - 014003_11, 2019/01

 Times Cited Count:12 Percentile:67.23(Physics, Fluids & Plasmas)

Poloidal asymmetries of the $$E times B$$ plasma flow are known to play a role in neoclassical transport. According to conventional neoclassical theory, the level of poloidal asymmetry of the electric potential is expected to be very small. In the present work, a general framework for the generation of axisymmetric structures of potential by turbulence is presented. Zonal flows, geodesic acoustic modes and convective cells are described by a single model. This is done by solving the gyrokinetic equation coupled to the quasi-neutrality equation. This calculation provides a predictive calculation of the frequency spectrum of flows given a specified forcing due to turbulence. It also shows that the dominant mechanism comes from zonal flow compression at intermediate frequencies, while ballooning of the turbulence Reynolds stress appears to be the main drive at low frequency.

Journal Articles

Progress in the ITER physics basis, 4; Power and particle control

Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.

Nuclear Fusion, 47(6), p.S203 - S263, 2007/06

 Times Cited Count:859 Percentile:98.25(Physics, Fluids & Plasmas)

Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.

Journal Articles

Plasma-surface interaction, scrape-off layer and divertor physics; Implications for ITER

Lipschultz, B.*; Asakura, Nobuyuki; Bonnin, X.*; Coster, D. P.*; Counsell, G.*; Doerner, R.*; Dux, R.*; Federici, G.*; Fenstermacher, M. E.*; Fundamenski, W.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

The work of the ITPA SOL/divertor group is reviewed. The high-n nature of ELMs has been elucidated and new measurements have determined that they carry 10-20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. Analysis of ELM measurements imply that the ELM continuously loses energy as it travels across the SOL. The prediction of ITER divertor disruption power loads have been reduced as a result of finding that the divertor footprint broadens during the thermal quench and that the plasma can lose up to 80% of its thermal energy before the thermal quench (not for VDEs or ITBs). Disruption mitigation through massive gas puffing has been successful at reducing divertor heat loads but estimates of the effect on the main chamber walls indicate 10s of kG of Be would be melted/mitigation. Long-pulse studies have shown that the fraction of injected gas that can be recovered after a discharge decreases with discharge length. The use of mixed materials gives rise to a number of potential processes.

Journal Articles

Edge localized mode physics and operational aspects in tokamaks

B$'e$coulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An$'e$, J.-M.*; et al.

Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12

 Times Cited Count:84 Percentile:91.17(Physics, Fluids & Plasmas)

no abstracts in English

Oral presentation

How to prepare the GYSELA-X code to future exascale edge-core simulations

Grandgirard, V.*; Asahi, Yuichi; Bigot, J.*; Bourne, E.*; Dif-Pradalier, G.*; Donnel, P.*; Garbet, X.*; Ghendrih, P.*

no journal, , 

Core transport modelling in tokamak plasmas has now reached maturity with non-linear 5D gyrokinetic codes in the world available to address this issue. However, despite numerous successes, their predictive capabilities are still challenged, especially for optimized discharges. Bridging this gap requires extending gyrokinetic modelling in the edge and close to the material boundaries, preferably addressing edge and core transport on an equal footing. This is one of the long term challenges for the petascale code GYSELA [V. Grandgirard et al., CPC 2017 (35)]. Edge-core turbulent plasma simulations with kinetic electrons will require exascale HPC capabilities. We present here the different strategies that we are currently exploring to target the disruptive use of billions of computing cores expected in exascale-class supercomputer as OpenMP4.5 tasks for overlapping computations and MPI communications, KOKKOS for performant portability programming and code refactoring.

5 (Records 1-5 displayed on this page)
  • 1