Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Theory of spin Hall magnetoresistance (SMR) and related phenomena

Chen, Y.-T.*; Takahashi, Saburo*; Nakayama, Hiroyasu*; Althammer, M.*; Goennenwein, S. T. B.*; Saito, Eiji; Bauer, G. E. W.*

Journal of Physics; Condensed Matter, 28(10), p.103004_1 - 103004_15, 2016/03

 Times Cited Count:81 Percentile:61.66(Physics, Condensed Matter)

We review the so-called spin Hall magnetoresistance (SMR) in bilayers of a magnetic insulator and a metal, in which spin currents are generated in the normal metal by the spin Hall effect. The associated angular momentum transfer to the ferromagnetic layer and thereby the electrical resistance is modulated by the angle between the applied current and the magnetization direction. The SMR provides a convenient tool to non-invasively measure the magnetization direction and spin-transfer torque to an insulator. We introduce the minimal theoretical instruments to calculate the SMR, i.e. spin diffusion theory and quantum mechanical boundary conditions. This leads to a small set of parameters that can be fitted to experiments. We discuss the limitations of the theory as well as alternative mechanisms such as the ferromagnetic proximity effect and Rashba spin-orbit torques, and point out new developments.

Journal Articles

Origin of the spin Seebeck effect in compensated ferrimagnets

Gepr$"a$gs, S.*; Kehlberger, A.*; Coletta, F.*; Qiu, Z.*; Guo, E.-J.*; Schulz, T.*; Mix, C.*; Meyer, S.*; Kamra, A.*; Althammer, M.*; et al.

Nature Communications (Internet), 7, p.10452_1 - 10452_6, 2016/02

 Times Cited Count:152 Percentile:97.33(Multidisciplinary Sciences)

Journal Articles

Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

Schreier, M.*; Bauer, G. E. W.*; Vasyuchka, V.*; Flipse, J.*; Uchida, Kenichi*; Lotze, J.*; Lauer, V.*; Chumak, A.*; Serga, A.*; Daimon, Shunsuke*; et al.

Journal of Physics D; Applied Physics, 48(2), p.025001_1 - 025001_5, 2015/01

 Times Cited Count:54 Percentile:87.5(Physics, Applied)

Journal Articles

Theory of spin Hall magnetoresistance

Chen, Y.-T.*; Takahashi, Saburo*; Nakayama, Hiroyasu*; Althammer, M.*; Goennenwein, S. T. B.*; Saito, Eiji; Bauer, G. E. W.*

Physical Review B, 87(14), p.144411_1 - 144411_9, 2013/04

 Times Cited Count:614 Percentile:99.7(Materials Science, Multidisciplinary)

We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a nonequilibrium proximity phenomenon. We compute the SMR in F|N and F|N|F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N|F bilayers. For F|N|F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.

4 (Records 1-4 displayed on this page)
  • 1