検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 246 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Role of solute hydrogen on mechanical property enhancement in Fe-24Cr-19Ni austenitic steel; An ${it in situ}$ neutron diffraction study

伊東 達矢; 小川 祐平*; Gong, W.; Mao, W.*; 川崎 卓郎; 岡田 和歩*; 柴田 曉伸*; Harjo, S.

Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04

 被引用回数:0

Incorporating solute hydrogen into Fe-Cr-Ni-based austenitic stainless steels enhances both strength and ductility, providing a promising solution to hydrogen embrittlement by causing solid-solution strengthening and assisting deformation twinning. However, its impacts on the relevant lattice defects evolution (${it i.e.}$, dislocations, stacking faults, and twins) during deformation remains unclear. This study compared the tensile deformation behavior in an Fe-24Cr-19Ni (mass%) austenitic steel with 7600 atom ppm hydrogen-charged (H-charged) and without hydrogen-charged (non-charged) using ${it in situ}$ neutron diffraction. Hydrogen effects on the lattice expansion, solid-solution strengthening, stacking fault probability, stacking fault energy, dislocation density, and strain/stress for twin evolution were quantitatively evaluated to link them with the macroscale mechanical properties. The H-charged sample showed improvements in yield stress, flow stress, and uniform elongation, consistent with earlier findings. However, solute hydrogen exhibited minimal influences on the evolution of dislocation and stacking fault. This fact contradicts the previous reports on hydrogen-enhanced dislocation and stacking fault evolutions, the latter of which can be responsible for the enhancement of twinning. The strain for twin evolution was smaller in the H-charged sample compared to the non-charged one. Nevertheless, when evaluated as the onset stress for twin evolution, there was minimal change between the two samples. These findings suggest that the increase in flow stress due to the solid-solution strengthening by hydrogen is a root cause of accelerated deformation twinning at a smaller strain, leading to an enhanced work-hardening rate and improved uniform elongation.

論文

On the role of austenite stability in yielding behavior of a medium Mn steel with a duplex austenite-martensite microstructure

Wang, Y.*; Gong, W.; Harjo, S.; 他7名*

Acta Materialia, 288, p.120840_1 - 120840_14, 2025/04

Low yield strength and the presence of Luders bands constitute principal impediments to the extensive applications of conventional medium Mn steels with a duplex microstructure of ferrite and austenite. Flash heating and the concept of chemical heterogeneity have been combined to engineer a duplex austenite-martensite microstructure in medium Mn steels, which has proven effective in augmenting the yield strength and mitigating the occurrence of Luders bands. However, the underlying mechanisms remain ambiguous. In the present work, the effect of austenite stability on yielding behavior was systematically investigated in an austenite-martensite duplex medium Mn steel. Austenite stability was identified as the critical factor governing yield strength, where reduced stability promotes early stage deformation induced martensite transformation, thereby decreasing yield strength. Diminished austenite stability may as well induce enhanced work hardening, thereby result in the inclination and eventual elimination of yield plateau, concomitant with the disappearance of Luders bands. These observations expand our current understanding of the yielding behavior in medium Mn steels and offer insights for the design of other advanced high strength steels.

論文

Unusual low-temperature ductility increase mediated by dislocations alone

Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.

Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02

 被引用回数:0 パーセンタイル:0.00(Nanoscience & Nanotechnology)

Face-centered cubic (fcc) medium-/high-entropy alloys (M/HEAs) typically enhance strength and ductility at cryogenic temperatures via stacking faults, twinning, or martensitic transformation. However, in-situ neutron diffraction on VCoNi MEA at 15 K reveals that strain hardening is driven solely by rapid dislocation accumulation, without these mechanisms. This results in increased yield strength, strain hardening, and fracture strain. The behavior, explained by the Orowan equation, challenges conventional views on cryogenic strengthening in fcc M/HEAs and highlights the role of dislocation-mediated plasticity at low temperatures.

論文

A Lightweight shape-memory alloy with superior temperature-fluctuation resistance

Song, Y.*; Xu, S.*; 佐藤 駿介*; Lee, I.*; Xu, X.*; 大森 俊洋*; 長迫 実*; 川崎 卓郎; 鬼柳 亮嗣; Harjo, S.; et al.

Nature, 638, p.965 - 971, 2025/02

In advanced applications like aerospace and space exploration, materials must balance lightness, functionality, and extreme thermal fluctuation resistance. Shape-memory alloys show promise with strength, toughness, and substantial strain recovery due to superelasticity, but maintaining low mass and effective operation at cryogenic temperatures is challenging. We hereby introduce a novel shape-memory alloy that adheres to these stringent criteria. Predominantly composed of Ti and Al with a chemical composition of Ti$$_{75.25}$$Al$$_{20}$$Cr$$_{4.75}$$, this alloy 25 is characterized by a low density (4.36$$times$$10$$^{3}$$ kg/m$$^{3}$$) and a high specific strength (185$$times$$10$$^{3}$$ Pa$$cdot$$m$$^{3}$$/kg) at room temperature, while exhibiting excellent superelasticity. The superelasticity, owing to a reversible stress-induced phase transformation from an ordered body-centered cubic parent phase to an ordered orthorhombic martensite, allows for a recoverable strain exceeding 7%. Remarkably, this functionality persists across a broad range of temperatures, from deep cryogenic 4.2 K to above room temperature, arising from an unconventional temperature dependence of transformation stresses. Below a certain threshold during cooling, the critical transformation stress inversely correlates with temperature. We interpret this behavior from the perspective of a temperature-dependent anomalous lattice instability of the parent phase. This alloy holds potential in everyday appliances requiring flexible strain accommodations, as well as components designed for extreme environmental conditions such as deep space and liquefied gases.

論文

Characteristic deformation microstructure evolution and deformation mechanisms in face-centered cubic high/medium entropy alloys

吉田 周平*; Gong, W.; 他9名*

Acta Materialia, 283, p.120498_1 - 120498_15, 2025/01

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

Face-centered cubic (FCC) high/medium entropy alloys (HEAs/MEAs), novel multi-principal element alloys, are known to exhibit exceptional mechanical properties at room temperature; however, the origin is still elusive. Here, we report the deformation microstructure evolutions in a tensile-deformed Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ representative MEA and Co$$_{60}$$Ni$$_{40}$$ alloy, a conventional binary alloy for comparison. These FCC alloys have high/low friction stresses, and share similar other material properties. The Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ MEA exhibited higher yield strength and work-hardening ability than in the Co$$_{60}$$Ni$$_{40}$$ alloy. Deformation microstructures in the Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ alloy were marked by the presence of coarse dislocation cells (DCs) regardless of grain orientation and a few deformation twins (DTs) in grains with the tensile axis (TA) near $$<$$1 1 1$$>$$. In contrast, the MEA developed three distinct deformation microstructures depending on grain orientations: fine DCs in grains with the TA near $$<$$1 0 0$$>$$, planar dislocation structure (PDS) in grains with other orientations, and a high density of DTs along with PDS in grains oriented $$<$$1 1 1$$>$$. These findings demonstrate that FCC HEAs/MEAs with high friction stresses naturally develop unique deformation microstructures which is beneficial for realizing superior mechanical properties compared to conventional materials.

論文

Role of retained austenite and deformation-induced martensite in 0.15C-5Mn steel monitored by ${it in situ}$ neutron diffraction measurement during tensile deformation

山下 享介*; 諸岡 聡; Gong, W.; 川崎 卓郎; Harjo, S.; 北條 智彦*; 興津 貴隆*; 藤井 英俊*

ISIJ International, 64(14), p.2051 - 2060, 2024/12

An Fe-0.15C-5Mn-0.5Si-0.05Nb steel annealed at 660$$^{circ}$$C and 685$$^{circ}$$C showed L$"u$ders deformation followed by high work hardening, with variations in L$"u$ders strain and hardening behavior. ${it In situ}$ neutron diffraction during tensile tests analyzed phase stresses, strength contributions, and austenite orientation. Deformation-induced martensite contributed $$sim$$1000 MPa to strength near tensile failure, while austenite mainly enhanced ductility via transformation-induced plasticity. Austenite transformed to martensite during L$"u$ders deformation regardless of orientation, though 311-oriented grains tended to remain along the tensile direction.

論文

Enhanced cryogenic mechanical properties of heterostructured CrCoNi multicomponent alloy; Insights from ${it in situ}$ neutron diffraction

Naeem, M.*; Ma, Y.*; Knowles, A. J.*; Gong, W.; Harjo, S.; Wang, X.-L.*; Romero-Resendiz, L.*; 他6名*

Materials Science & Engineering A, 916, p.147374_1 - 147374_8, 2024/11

 被引用回数:1 パーセンタイル:59.42(Nanoscience & Nanotechnology)

Heterostructured materials (HSMs) improve the strength-ductility trade-off of alloys, but their cryogenic performance under real-time deformation is unclear. We studied heterostructured CrCoNi medium-entropy alloy via ${it in situ}$ neutron diffraction at 77 K and 293 K. A significant mechanical mismatch between fine and coarse grains led to an exceptional yield strength of 918 MPa at 293 K, increasing to 1244 MPa at 77 K with a uniform elongation of 34%. This strength-ductility synergy at 77 K is attributed to high dislocation pile-up density, increased planar faults, and martensitic transformation. Compared to homogeneous alloys, HSMs show promise for enhancing cryogenic mechanical performance in medium-/high-entropy alloys.

論文

${it In situ}$ neutron diffraction study to elucidate hydrogen effect on the deformation mechanism in Type 310S austenitic stainless steel

伊東 達矢; 小川 祐平*; Gong, W.; Mao, W.*; 川崎 卓郎; 岡田 和歩*; 柴田 曉伸*; Harjo, S.

Proceedings of the 7th International Symposium on Steel Science (ISSS 2024), p.237 - 240, 2024/11

Hydrogen embrittlement has long been an obstacle to the development of safe infrastructure. However, in contrast to hydrogen's embrittling effect, recent research has revealed that the addition of hydrogen improves both the strength and uniform elongation of AISI Type 310S austenitic stainless steel. A detailed understanding of how hydrogen affects the deformation mechanism of this steel could pave the way for the development of more advanced materials with superior properties. In the present study, ${it in situ}$ neutron diffraction experiments were conducted on Type 310S steel with and without hydrogen-charged to investigate the effect of hydrogen on the deformation mechanism. In addition to the effect of solid-solution strengthening by hydrogen, the q-value, a parameter representing the proportion of edge and screw dislocations in the accumulated dislocations, was quantitatively evaluated using CMWP analysis on neutron diffraction patterns. The comparison of q-values between the hydrogen-charged and non-charged samples reveals that hydrogen has minimal effect on dislocation character in Type 310S steel.

論文

Deformation behavior of ultrafine-grained TRIP steel observed by neutron diffraction

Harjo, S.; Mao, W.*; Gong, W.; 川崎 卓郎

Proceedings of the 7th International Symposium on Steel Science (ISSS 2024), p.205 - 208, 2024/11

This study aimed to elucidate the effect of grain size on the deformation behavior of TRIP steel. We prepared metastable austenitic Fe-24Ni-0.3C steel samples with average grain sizes of 35 ${textmu}$m (coarse grain: CG) and 0.5 ${textmu}$m (ultrafine-grain: UFG) for in situ neutron diffraction studies during tensile deformation at room temperature. Our observations revealed increases in dislocation density in both samples prior to DIMT, indicating that plastic deformation precedes DIMT regardless of grain size. In the UFG sample, a significant rise in dislocation density occurred just around the yielding point with minimal increases in macroscopic plastic strain. Additionally, the dislocations exhibited strong dipole arrangements.

論文

Martensitic transformation-governed Luders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures

Mao, W.*; Gao, S.*; Gong, W.; 川崎 卓郎; 伊東 達矢; Harjo, S.; 辻 伸泰*

Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10

 被引用回数:2 パーセンタイル:59.42(Materials Science, Multidisciplinary)

Using a hybrid method of in situ neutron diffraction and digital image correlation, we found that ultrafine-grained 304 stainless steel exhibits Luders deformation after yielding, in which the deformation behavior changes from a cooperation mechanism involving dislocation slip and martensitic transformation to one primarily governed by martensitic transformation, as the temperature decreases from 295 K to 77 K. Such martensitic transformation-governed Luders deformation delays the activation of plastic deformation in both the austenite parent and martensite product, resulting in delayed strain hardening. This preserves the strain-hardening capability for the later stage of deformation, thereby maintaining a remarkable elongation of 29% while achieving a high tensile strength of 1.87 GPa at 77 K.

論文

Application of neutron characterization techniques to metallic structural materials

Wang, Y.*; Gong, W.; Su, Y. H.; Li, B.*

Acta Metallurgica Sinica, 60(8), p.1001 - 1016, 2024/08

 被引用回数:0 パーセンタイル:0.00(Metallurgy & Metallurgical Engineering)

The correlation between the atomic structure, microstructure, and macroscopic properties of structural materials remains a core issue in materials research. In recent years, substantial progress has been achieved in constructing accelerator-based neutron sources and related experimental techniques, offering a robust platform for an in-depth understanding of the aforementioned correlation under real-time and in situ conditions. This article reviews the latest advancements in the application of major neutron characterization techniques, including neutron diffraction, Bragg-edge imaging, small-angle neutron scattering, pair distribution function analysis, and quasi-elastic/inelastic neutron scattering, in structural materials. Furthermore, it particularly highlights the origins and evolution of internal stresses during the phase transformations of steels, deformation mechanisms in light metals such as magnesium alloys, and microstructure and residual stress analyses using Bragg-edge imaging. Finally, a brief outlook on future development trends is provided.

論文

Internal strain measurement by neutron diffraction under transverse compressive stress for Nb$$_{3}$$Sn wires with and without Cu-Nb reinforcement

中本 美緒*; 菅野 未知央*; 荻津 透*; 杉本 昌弘*; 谷口 諒*; 廣瀬 清慈*; 川崎 卓郎; Gong, W.; Harjo, S.; 淡路 智*; et al.

IEEE Transactions on Applied Superconductivity, 34(5), p.8400806_1 - 8400806_6, 2024/08

 被引用回数:0 パーセンタイル:0.00(Engineering, Electrical & Electronic)

For an accelerator magnet, a certain mechanical strength is required to sustain against a transverse compression stress due to Lorentz force. A bronze-route Nb$$_{3}$$Sn wire with Cu-Nb reinforcement was developed by Tohoku University and Furukawa Electric to enhance the strength against axial tension. The Cu-Nb reinforcement wire also exhibited some indication of strength improvement against transverse compression; however, the details of a reinforcement mechanism for the transverse compression stress have not been clarified. In this study, the internal strains of Nb$$_{3}$$Sn bronze-route wires with and without the Cu-Nb reinforcement under transverse compression stress were evaluated by neutron diffraction at BL19 (TAKUMI) in J-PARC. The samples were attached to jig with solder only at the ends and compression was applied at the center of the samples with 30-mm anvil with 5-mm wide and 8- to 15-mm high beam. Since a critical current, Ic of a superconducting wire depends on the three-dimensional strain, internal strain of Nb$$_{3}$$Sn along the axial and two orthogonal radial directions were evaluated at room temperature (RT). In the different setup, Ic measurements of the wires under transverse compression stresses were also performed at 4.2 K and 14.5 T. Using 3-mm wide anvil, the transverse compression was applied at 4.2 K or RT. The neutron diffraction results indicated no significant differences in the internal strains of Nb$$_{3}$$Sn under transverse compression between the samples with and without Cu-Nb reinforcement, while the Ic measurements showed potential increase in the irreversible stress ($$sigma$$$$_{irr}$$) for Cu-Nb reinforced wires. The reason for this discrepancy was discussed based on the difference in the experimental setups for each measurement.

論文

Effects of loading direction on the anisotropic tensile properties of duplex stainless steels based on phase strains obtained by in situ neutron diffraction experiments

松下 慧*; 土田 紀之*; 石丸 詠一郎*; 平川 直樹*; Gong, W.; Harjo, S.

Journal of Materials Engineering and Performance, 33(13), p.6352 - 6361, 2024/07

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

This study investigated the anisotropy of the tensile properties in a duplex stainless steel of 24Cr-5Ni-0.18N based on in situ neutron diffraction experiments. The 24Cr-5Ni-0.18N steel showed a better balance of tensile strength (TS) and uniform elongation (U.El) compared with 329J4L and 329J1 steels. The Lankford value ($$r$$-value) of the 24Cr-5Ni-0.18N steel was comparable to other duplex stainless steels while showing a larger TS. Regarding the anisotropy of the mechanical properties, the results for a test specimen oriented at 45$$^{circ}$$ showed a low yield strength (YS) and TS, but a better U.El and $$r$$-value. The neutron diffraction results are discussed to explain the mechanical properties.

論文

マルチピークを用いた応力評価

Harjo, S.; Gong, W.; 川崎 卓郎

日本材料学会第58回X線材料強度に関するシンポジウム講演論文集, p.51 - 54, 2024/07

In-situ neutron diffraction was used to study tensile deformation in an extruded AZ31 alloy. The aim was to validate existing methods and develop new ones for stress evaluation in magnesium alloys. Results showed varied increases in lattice strains among grains, posing challenges for conventional procedures. A new method, considering grain volume fraction and multiple orientations, proved highly accurate. When simultaneous hk.l peaks weren't available, the 12.1 peak was recommended for stress evaluation, showing a linear relationship with applied stress throughout deformation.

論文

マルチモーダル化したマグネシウム合金の変形中の構成相・組織の挙動

Harjo, S.; Gong, W.; 相澤 一也; 山崎 倫昭*; 川崎 卓郎

日本材料学会第58回X線材料強度に関するシンポジウム講演論文集, p.58 - 60, 2024/07

The experiment and analysis procedures for a sample exhibiting multimodal structures were outlined. The sample, a Mg$$_{97}$$Zn$$_1$$Y$$_2$$ alloy, initially comprised two phases: the HCP $$alpha$$ matrix ($$alpha$$Mg) and the long-period stacking ordered phase (LPSO), constituting approximately 25% of the volume. Through hot extrusion at 623 K with an extrusion ratio (R) of 5.0, the alloy was rendered multimodal. Specifically, at an R value of 5.0, dynamic recrystallization occurred partially within the $$alpha$$Mg phase, resulting in a bimodal microstructure. This microstructure consisted of a deformed $$alpha$$Mg component and a recrystallized $$alpha$$Mg component. An analysis employing Electron Backscatter Diffraction (EBSD) data facilitated multimodal characterization, enabling successful determination of stresses within the individual $$alpha$$Mg components, as well as the LPSO phase stress.

論文

Dual nanoprecipitation and nanoscale chemical heterogeneity in a secondary hardening steel for ultrahigh strength and large uniform elongation

Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.

Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06

 被引用回数:11 パーセンタイル:98.07(Materials Science, Multidisciplinary)

Nanoprecipitates and nanoscale retained austenite (RA) with suitable stability play crucial roles in determining the yield strength (YS) and ductility of ultrahigh strength steels (UHSSs). However, owing to the kinetics incompatibility between nanoprecipitation and austenite reversion, it is highly challenging to simultaneously introduce high-density nanoprecipitates and optimized RA in UHSSs. In this work, through the combination of austenite reversion treatment (ART) and subsequent flash austenitizing (FA), nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process. This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase. The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn) and (Mo,Cr)$$_{2}$$ C and nanoscale austenite stabilized via Mn and Ni enrichment. The hard martensitic matrix strengthened by high-density dual-nanoprecipitates constrains the plastic deformation of soft RA with a relatively low fraction, and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity (TRIP) effect. As a result, the newly-developed UHSS exhibits an ultrahigh YS of 1.7 GPa, an ultimate tensile strength (UTS) of 1.8 GPa, a large uniform elongation (UE) of 8.5 percent, and a total elongation (TE) of 13 percent. The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.

論文

Direct observations of dynamic and reverse transformation of Ti-6Al-4V alloy and pure titanium

Guo, B.*; Chen, H.*; Chong, Y.*; Mao, W.; Harjo, S.; Gong, W.; Zhang, Z.*; Jonas, J. J.*; 辻 伸泰*

Acta Materialia, 268, p.119780_1 - 119780_11, 2024/04

 被引用回数:6 パーセンタイル:95.58(Materials Science, Multidisciplinary)

This paper focused on the characterization and mechanism of the dynamic transformation from the alpha to beta phase during the hot deformation of Ti-6Al-4V alloy and pure titanium. The investigation employed in-situ neutron diffraction and atomistic simulations for a comprehensive understanding of the process. Dynamic transformations were observed during deformation of the Ti-6Al-4V alloy and pure titanium below the beta transus temperatures. During isothermal holding after unloading, the in-situ neutron diffraction results for Ti-6Al-4V and pure titanium indicated a sluggish reverse transformation from the beta to alpha phase. The mechanism of dynamic transformation was explored through in-situ neutron diffraction and atomistic simulations, which revealed twofold effects of deformation on dynamic transformation. Firstly, deformation led to a significant rise in the Gibbs energy of the alpha phase relative to the beta phase, expanding the beta phase region and diminishing the alpha phase region. Secondly, deformation lowered the energy barriers associated with dynamic transformation, facilitating the activation of dynamic transformation more readily than in the equilibrium state before deformation.

論文

${it In situ}$ neutron diffraction revealing the achievement of excellent combination of strength and ductility in metastable austenitic steel by grain refinement

Mao, W.; Gong, W.; Harjo, S.; 諸岡 聡; Gao, S.*; 川崎 卓郎; 辻 伸泰*

Journal of Materials Science & Technology, 176, p.69 - 82, 2024/03

 被引用回数:5 パーセンタイル:16.17(Materials Science, Multidisciplinary)

Fe-24Ni-0.3C(wt.%)準安定オーステナイト鋼の降伏応力は、平均結晶粒径が35$$mu$$m(粗粒[CG])から0.5$$mu$$m(超微細粒[UFG])に減少すると3.5倍(158$$rightarrow$$551MPa)に増加したが、引張伸びは大きく維持された(0.87$$rightarrow$$0.82)。結晶粒径が力学特性と変形機構に及ぼす影響を定量的に明らかにするため、室温での引張変形中にCGとUFG Fe-24Ni-0.3C鋼のその場中性子回折測定を行った。CGとUFG試料における塑性変形の初期段階は転位すべりによって支配され、変形後期には変形誘起マルテンサイト変態(DIMT)も生じた。結晶粒の微細化により、DIMTの開始応力が大きく増加し、ひずみに関するDIMTの速度が抑制されることがわかった。結果として、(i)結晶粒微細化によりオー ステナイトが安定化し、DIMTに対して最も安定な結晶粒である$$<$$111$$>$$//LD(LD:負荷方向)オーステナイト粒でのDIMTの開始が大幅に遅れた。その結果、UFG試験片の$$<$$111$$>$$//LDオーステナイト粒のほとんどはマルテンサイトに変態しなかった。(ii)結晶粒の微細化は、マルテンサイト変態の自己促進効果も抑制した。それにもかかわらず、UFG試験片の変態速度が低いDIMTは、CG試験片のより応力を増加させるのに効率がよく、変形中に均一な変形を維持するのに適していた。以上の現象は、UFG準安定オーステナイト鋼の優れた強度と延性の両立に相互に寄与している。

論文

Cryogenic deformation behavior of a dual-phase Mg-Li alloy investigated by in-situ neutron diffraction

Gong, W.; Gholizadeh, R.*; 川崎 卓郎; 相澤 一也; Harjo, S.

Magnesium Technology 2024, p.89 - 90, 2024/03

Mg and its alloys generally exist as a single hcp crystal structure at room temperature. It is widely recognized that the application of Mg alloys is hindered by their limited formability at room temperature, primarily attributable to the scarcity of readily activated deformation modes within the hcp phase. The addition of Li in Mg alloy can stable the bcc phase at room temperature, and these dual-phase (hcp+bcc) Mg-Li alloys exhibit excellent formability. The Li-enriched bcc phase has been frequently considered as the origin for improving formability. However, these Mg-Li alloys show poor work-hardening ability and the resultant low strength at room temperature. Considering that the dislocation recovery can be suppressed by decreasing the deformation temperature and the activity of deformation mode may be changed with temperature, we investigated the deformation behavior of a commercial LZ91 magnesium alloy at cryogenic temperatures using in-situ neutron diffraction.

論文

The Influence of precipitation on plastic deformation in a high Mg-containing AlMgZn-based crossover alloy; Slip localization and strain hardening

Zhang, X.*; Gong, W.; 他8名*

International Journal of Plasticity, 173, p.103896_1 - 103896_24, 2024/02

 被引用回数:14 パーセンタイル:98.82(Engineering, Mechanical)

The distribution and partitioning of solute atoms in age-hardenable aluminum (Al) alloys markedly impact strength, ductility and failure of alloy materials, thus rendering the understanding of dislocation-obstacle (solute-rich features) interactions crucial in the development of a new class of heat-treatable Al alloys. Here, we investigate the slip mechanisms, strain localization and strain hardening of a high Mg-content lightweight AlMgZn-based crossover alloy aged to different conditions with the focus on the dislocation-obstacle interactions. It is found that due to different elemental partitioning between matrix and solute-rich features the interaction of dislocations with obstacles can be drastically different for samples with varying precipitates. The dislocations in the under-aged and near peak-aged samples show predominantly planar slip, which produces strain localization. Whereas in the over-aged sample, gliding dislocations initially bend between adjacent precipitates lying in the slip planes, and subsequently surmount them by local cross slip processes, giving rise to homogeneous slip. It is discovered that strain localization in the form of coarse slip bands induces strain hardening in the under-aged material. To understand the enhanced strain hardening observed in the under-aged sample, four key influencing factors are proposed. In addition, the predicted yield strengths for the solution-treated and artificially aged materials match well with those experimentally measured values.

246 件中 1件目~20件目を表示