Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawano, Toshihiko*; Cho, Y. S.*; Dimitriou, P.*; Filipescu, D.*; Iwamoto, Nobuyuki; Plujko, V.*; Tao, X.*; Utsunomiya, Hiroaki*; Varlamov, V.*; Xu, R.*; et al.
Nuclear Data Sheets, 163, p.109 - 162, 2020/01
Times Cited Count:38 Percentile:98.86(Physics, Nuclear)Goriely, S.*; Dimitriou, P.*; Wiedeking, M.*; Belgya, T.*; Firestone, R.*; Kopecky, J.*; Krtika, M.*; Plujko, V.*; Schwengner, R.*; Siem, S.*; et al.
European Physical Journal A, 55(10), p.172_1 - 172_52, 2019/10
Times Cited Count:42 Percentile:90.52(Physics, Nuclear)Dimitriou, P.*; Belgya, T.*; Cho, Y.-S.*; Filipescu, D.*; Firestone, R.*; Goriely, S.*; Iwamoto, Nobuyuki; Kawano, Toshihiko*; Kopecky, J.*; Krticka, M.*; et al.
EPJ Web of Conferences, 178, p.06005_1 - 06005_3, 2018/05
Times Cited Count:2 Percentile:77.64no abstracts in English
Kondo, Takeo*; Utsunomiya, Hiroaki*; Goriely, S.*; Iwamoto, Chihiro*; Akimune, Hidetoshi*; Yamagata, Tamio*; Toyokawa, Hiroyuki*; Harada, Hideo; Kitatani, Fumito; Lui, Y.-W.*; et al.
Nuclear Data Sheets, 119, p.310 - 313, 2014/05
Times Cited Count:2 Percentile:20.28(Physics, Nuclear)Utsunomiya, Hiroaki*; Goriely, S.*; Kondo, Takeo*; Iwamoto, Chihiro*; Akimune, Hidetoshi*; Yamagata, Tamio*; Toyokawa, Hiroyuki*; Harada, Hideo; Kitatani, Fumito; Lui, Y.-W.*; et al.
Physical Review C, 88(1), p.015805_1 - 015805_6, 2013/07
Times Cited Count:68 Percentile:96.51(Physics, Nuclear)Utsunomiya, Hiroaki*; Akimune, Hidetoshi*; Yamagata, Tamio*; Iwamoto, Chihiro*; Goriely, S.*; Daoutidis, I.*; Toyokawa, Hiroyuki*; Harada, Hideo; Kitatani, Fumito; Iwamoto, Nobuyuki; et al.
Proceedings of 14th International Symposium on Capture -Ray Spectroscopy and Related Topics, p.505 - 514, 2013/05
Kondo, Takeo*; Utsunomiya, Hiroaki*; Goriely, S.*; Daoutidis, I.*; Iwamoto, Chihiro*; Akimune, Hidetoshi*; Okamoto, Akiyuki*; Yamagata, Tamio*; Kamata, Masaki*; Ito, Osamu*; et al.
Physical Review C, 86(1), p.014316_1 - 014316_7, 2012/07
Times Cited Count:38 Percentile:87(Physics, Nuclear)Using quasi-monochromatic laser-Compton scattering rays, total photoneutron cross sections were measured for
Pb near neutron threshold with a high-efficiency 4
neutron detector. Partial
1 and
1 photoneutron cross sections along with total cross sections were determined for
Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly-polarized
rays. The
1 strength dominates over the
1 strength in the neutron channel where
1 photoneutron cross sections show extra strength of the pygmy dipole resonance in
Pb near the neutron threshold corresponding to 0.32-0.42% of the Thomas-Reiche-Kuhn sum rule. Several
units of B(
1)
strength were observed in
Pb just above neutron threshold, which correspond to an
1 cross section less than 10% of the total photoneutron cross section.
Utsunomiya, Hiroaki*; Goriely, S.*; Kamata, Masaki*; Akimune, Hidetoshi*; Kondo, Takeo*; Ito, Osamu*; Iwamoto, Chihiro*; Yamagata, Tamio*; Toyokawa, Hiroyuki*; Lui, Y.-W.*; et al.
Physical Review C, 84(5), p.055805_1 - 055805_6, 2011/11
Times Cited Count:42 Percentile:89.95(Physics, Nuclear)Photoneutron cross sections were measured for Sn,
Sn,
Sn,
Sn, and
Sn near neutron threshold with quasi-monochromatic laser-Compton scattering
-rays. A systematic analysis of the present photoneutron data and existing neutron-capture data is made using the
-ray strength function on the basis of the HFB+QRPA model of E1 strength supplemented with a pygmy dipole resonance, which was deduced from a previous study on
Sn and
Sn. Radiative neutron capture cross sections for two radioactive nuclei,
Sn and
Sn, are deduced through the
-ray strength function method.
Utsunomiya, Hiroaki*; Goriely, S.*; Akimune, Hidetoshi*; Yamagata, Tamio*; Kondo, Takeo*; Iwamoto, Chihiro*; Okamoto, Akiyuki*; Harada, Hideo; Kitatani, Fumito; Goko, Shinji*; et al.
AIP Conference Proceedings 1377, p.255 - 259, 2011/10
Times Cited Count:0 Percentile:0.05Utsunomiya, Hiroaki*; Goriely, S.*; Arteaga, D. P.*; Daoutidis, I.*; Akimune, Hidetoshi*; Yamagata, Tamio*; Kondo, Takeo*; Iwamoto, Chihiro*; Kamata, Masaki*; Ito, Osamu*; et al.
AIP Conference Proceedings 1377, p.450 - 452, 2011/10
Times Cited Count:0 Percentile:0.05Utsunomiya, Hiroaki*; Goriely, S.*; Akimune, Hidetoshi*; Harada, Hideo; Kitatani, Fumito; Goko, Shinji*; Toyokawa, Hiroyuki*; Yamada, Kawakatsu*; Lui, Y.-W.*
Journal of the Korean Physical Society, 59(2), p.1713 - 1716, 2011/08
Times Cited Count:2 Percentile:20.67(Physics, Multidisciplinary)Utsunomiya, Hiroaki*; Goriely, S.*; Akimune, Hidetoshi*; Harada, Hideo; Kitatani, Fumito; Goko, Shinji*; Toyokawa, Hiroyuki*; Yamada, Kawakatsu*; Kondo, Takeo*; Ito, Osamu*; et al.
Physical Review C, 82(6), p.064610_1 - 064610_5, 2010/12
Times Cited Count:35 Percentile:87.33(Physics, Nuclear)The -ray strength function method (
SF method) is devised to indirectly determine radiative neutron capture cross sections for radioactive nuclei. This method is applied here to the
Pd case. Photoneutron cross sections were measured for
Pd near neutron threshold with quasi-monochromatic laser-Compton-scattering
-ray beams. These photoneutron cross sections as well as the reverse radiative neutron capture cross sections for
Pd are used to provide constraints on the
Pd(n,
)
Pd cross section.
Utsunomiya, Hiroaki*; Goriely, S.*; Akimune, Hidetoshi*; Yamagata, Tamio*; Kondo, Takeo*; Iwamoto, Chihiro*; Ito, Osamu*; Kamata, Masaki*; Io, Masanori*; Kususe, Koichi*; et al.
AIP Conference Proceedings 1377, p.447 - 449, 2010/10
Times Cited Count:0 Percentile:0.05Utsunomiya, Hiroaki*; Goriely, S.*; Akimune, Hidetoshi*; Harada, Hideo; Kitatani, Fumito; Goko, Shinji; Toyokawa, Hiroyuki*; Yamada, Kawakatsu*; Kondo, Takeo*; Ito, Osamu*; et al.
Physical Review C, 81(3), p.035801_1 - 035801_5, 2010/03
Times Cited Count:37 Percentile:88.27(Physics, Nuclear)This manuscript presents photoneutron cross sections for Zr. Combining the present data with the previously published Zr data, we investigated the
-ray strength function for zirconium isotopes systematically. We present a unified picture of the
-ray strength function that consists of the HFB + QRPA model of E1 strength accompanied by an extra M1 strength attributable to giant M1 resonance. It is shown that the
-ray strength function reproduces both (g,n) and (n,g) cross sections for Zr isotopes consistently.
Makinaga, Ayano*; Utsunomiya, Hiroaki*; Goriely, S.*; Kaihori, Takeshi*; Goko, Shinji*; Akimune, Hidetoshi*; Yamagata, Tamio*; Toyokawa, Hiroyuki*; Matsumoto, Tetsuro*; Harano, Hideki*; et al.
Physical Review C, 79(2), p.025801_1 - 025801_8, 2009/02
Times Cited Count:22 Percentile:77.68(Physics, Nuclear)Photoneutron cross sections were measured for Se immediately above the neutron separation energy with quasimonochromatic
-ray beams to experimentally constrain the E1
strength function for
Se. Two sets of the
strength function and the level density that equally meet the experimental constraint predict largely different neutron capture cross sections for
Se. Based on the Maxwell-averaged cross sections of the latest compilation complemented with the predicted cross sections for
Se, we calculated
N values of the main s-process component using a phenomenological model and deduced empirical abundances of the weak s-process component.
Makinaga, Ayano*; Utsunomiya, Hiroaki*; Kaihori, Takeshi*; Yamagata, Tamio*; Akimune, Hidetoshi*; Goriely, S.*; Toyokawa, Hiroyuki*; Matsumoto, Tetsuro*; Harano, Hideki*; Harada, Hideo; et al.
Nuclear Physics A, 805(1-4), p.564 - 566, 2008/06
Photoneutron cross sections were measured for Se near the neutron threshold energy with quasi-monochromatic
rays. Using the
Se(
,
) cross section as experimental constraints on the E1
strength function, we estimate the neutron capture rates for
Se. The solar abundance ratio of s-only nuclides
Kr and
Kr are analyzed in terms of the s-process branching at
Se within the local approximation. The corresponding temperature and neutron density regimes are discussed in the light of the s-process scenario in massive stars.
Segawa, Mariko; Nagai, Yasuki*; Masaki, Tomohiro*; Temma, Yasuyuki*; Shima, Tatsushi*; Mishima, Kenji*; Igashira, Masayuki*; Goriely, S.*; Koning, A.*; Hilaire, S.*
AIP Conference Proceedings 1016, p.448 - 450, 2008/05
Re-
Os pair is known as the most promising nuclear cosmochronometer with considerable potential. However, there remains non-trivial problems related to an excited neutron capture reaction of
Os at a stellar temperature. Firstly,
Os is produced and depleted by the slow process nucleosynthesis. Hence, it is necessary to obtain both the production and depletion rates of
Os. Secondly,
Os is depleted not only by its ground state neutron capture reaction but also by an excited state neutron capture reaction of
Os in a stellar temperature. In the present study, we have measured the neutron capture reaction cross sections for
Os,
Os and
Os accurately and neutron inelastic scattering reaction cross section for
Os off the ground state of
Os to its 9.75 keV first excited state in the neutron energy range from 10 to 100 keV.
Segawa, Mariko; Masaki, Tomohiro*; Nagai, Yasuki*; Temma, Yasuyuki*; Shima, Tatsushi*; Mishima, Kenji*; Igashira, Masayuki*; Goriely, S.*; Koning, A.*; Hilaire, S.*
Physical Review C, 76(2), p.022802_1 - 022802_5, 2007/08
Times Cited Count:17 Percentile:73.34(Physics, Nuclear)Discrete as well as continuum -ray energy spectra from the neutron capture by
Os,
Os, and
Os have been taken for the first time at 5
En
90 keV by an anti-Compton NaI(Tl) spectrometer. The detection of a weak discrete
-ray, about 0.5% of total
-ray strength, demonstrates the high sensitivity of the present measurement. The energy spectra enabled us to accurately determine the reaction cross sections with a small systematic uncertainty. Based on the new cross sections, we re-estimate on the basis of a careful reaction cross section calculation the correction factor F
for the neutron capture on the 9.75-keV first excited state in
Os as a function of stellar temperature, as required to derive the age of the Galaxy within the Re-Os chronology.
Makinaga, Ayano*; Hohara, Shinya*; Utsunomiya, Hiroaki*; Goko, Shinji*; Kaihori, Takeshi*; Akimune, Hidetoshi*; Yamagata, Tamio*; Goriely, S.*; Toyokawa, Hiroyuki*; Harano, Hideki*; et al.
Proceedings of Science (Internet), 4 Pages, 2006/10
no abstracts in English
Shizuma, Toshiyuki; Utsunomiya, Hiroaki*; Mohr, P.*; Hayakawa, Takehito; Goko, Shinji*; Makinaga, Ayano*; Akimune, Hidetoshi*; Yamagata, Tamio*; Ota, Masahisa*; Ogaki, Hideaki*; et al.
Physical Review C, 72(2), p.025808_1 - 025808_9, 2005/08
Times Cited Count:40 Percentile:89.55(Physics, Nuclear)Cross sections of the W,
Re,
Os(
) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the
strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor
for the neutron capture on the 9.75 keV state in
Os. Implications of
to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.