Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 109

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sensitivity of charged particle activation analysis for long-lived radioactive nuclide determination

Oshima, Masumi*; Yamaguchi, Yurie*; Asai, Masato; Tsukada, Kazuaki; Goto, Jun*; Bamba, Shigeru*; Bi, C.*; Morimoto, Takao*

Journal of Nuclear Science and Technology, 56(9-10), p.866 - 872, 2019/09

Sensitivity of charged particle activation analysis with 8 MeV proton beam was studied for determination of 35 long-lived radioactive nuclides. Reaction cross sections for those nuclides were estimated with ALICE-91 code and isomer yield ratios were estimated from those of neighboring isotopes by taking into account their spins and parities. It was found that the proposed charged particle activation analysis should show high sensitivity for the determination of several hardly measurable nuclides with long half-lives such as $$^{135}$$Cs, $$^{244}$$Pu, $$^{129}$$I, $$^{126}$$Sn, $$^{93}$$Mo, $$^{107}$$Pd, $$^{236}$$U, $$^{248}$$Cm, and $$^{237}$$Np.

Journal Articles

Model intercomparison of atmospheric $$^{137}$$Cs from the Fukushima Daiichi Nuclear Power Plant accident; Simulations based on identical input data

Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qu$'e$lo, D.*; et al.

Journal of Geophysical Research; Atmospheres, 123(20), p.11748 - 11765, 2018/10

A model intercomparison of the atmospheric dispersion of $$^{137}$$Cs emitted following the Fukushima Daiichi Nuclear Power Plant accident was conducted by 12 models to understand the behavior of $$^{137}$$Cs in the atmosphere. The same meteorological data, horizontal grid resolution, and an emission inventory were applied to all the models to focus on the model variability originating from the processes included in each model. The multi-model ensemble captured 40% of the observed $$^{137}$$Cs events, and the figure-of-merit in space for the total deposition of $$^{137}$$Cs exceeded 80. Our analyses indicated that the meteorological data were most critical for reproducing the $$^{137}$$Cs events. The results also revealed that the differences among the models were originated from the deposition and diffusion processes when the meteorological field was simulated well. However, the models with strong diffusion tended to overestimate the $$^{137}$$Cs concentrations.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Mechanical Engineering Journal (Internet), 5(5), p.18-00084_1 - 18-00084_9, 2018/10

To develop the security and safety fuel (3S-TRISO fuel) for Pu-burner high temperature gas-cooled reactor (HTGR), R&D on zirconium carbide (ZrC) directly coated on yttria stabilized zirconia (YSZ) has been started in the Japanese fiscal year 2015. As results of the direct coating test of ZrC on the dummy YSZ particle, ZrC layers with 18 - 21 microns of thicknesses have been obtained with 0.1 kg of particle loading weight. No deterioration of YSZ exposed by source gases of ZrC bromide process was observed by Scanning Transmission Electron Microscope (STEM).

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Design study of fuel and reactor core

Goto, Minoru; Aihara, Jun; Inaba, Yoshitomo; Ueta, Shohei; Fukaya, Yuji; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

JAEA has conducted design studies of a Pu-burner HTGR. The Pu-burner HTGR incinerates Pu by fission, and hence a high burn-up is required for the efficient incineration. In the fuel design, a thin ZrC layer, which acts as an oxygen getter and suppresses the internal pressure, was coated on the fuel kernel to prevent the CFP failure at the high burn-up. A stress analysis of the SiC layer, which acts as a pressure vessel for the CFP, was performed for with consideration of the depression effect due to the ZrC layer. As a result, the CFP failure fraction at high burn-up of 500 GWd/t satisfied the target value. In the reactor core design, an axial fuel shuffling was employed to attain the high burn-up, and the nuclear burn-up calculations with the whole core model and the fuel temperature calculations were performed. As a result, the nuclear characteristics, which are the shutdown margin and the temperature coefficient of reactivity, and the fuel temperature satisfied their target values.

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Mizuta, Naoki; Goto, Minoru; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. Especially, a zirconium carbide (ZrC) coating is one of key technologies of the 3S-TRISO, which performs as an oxygen getter to reduce the fuel failure due to internal pressure during the irradiation. R&Ds on ZrC coating directly on the dummy CeO$$_{2}$$-YSZ kernel have been carried in the Japanese fiscal year 2017. As results of ZrC coating tests by the bromide chemical vapor deposition process, stoichiometric ZrC coatings with 3 - 18 microns of thicknesses were obtained with 0.1 kg of particle loading weight.

Journal Articles

Dynamic nuclear self-polarization of III-V semiconductors

Koizumi, Mitsuo; Goto, Jun*; Matsuki, Seishi*

Journal of Semiconductors, 39(8), p.082001_1 - 082001_5, 2018/08

Dynamic nuclear self-polarization (DYNASP) is a phenomenon observed in III-V semiconductors. When electrons of the valence band of a semiconductor are optically excited to the conduction band, a relaxation process of the conduction electrons induces a large nuclear polarization to suddenly occur below a critical temperature. Extending the original theoretical work of Dyakonov et al., we examined the effect of spin distribution of valence electrons excited by the circularly polarized light and the effect of external magnetic field on the phenomenon of the nuclear self-polarization. We found that the nuclear polarization is achieved even above the critical temperatures by the effect of electron polarization and of the external magnetic field. To investigate the phenomenon experimentally, we constructed an apparatus for low-temperature experiments.

JAEA Reports

Comparison between HTFP code and minory changed FORNAX-A code

Aihara, Jun; Ueta, Shohei; Goto, Minoru; Inaba, Yoshitomo; Shibata, Taiju; Ohashi, Hirofumi

JAEA-Technology 2018-002, 70 Pages, 2018/06

JAEA-Technology-2018-002.pdf:1.46MB

HTFP code is code for calculation of additional release amount of fission product (FP) from fuel rod in high temperature gas-cooled reactor (HTGR) after stop of fission. Minory changed Fornax-A code also can calculate that. Therefore, release behavior of Cs calculated with HTFP code was compared with that calculated with minory modified FORNAX-A code in this report. Release constants of Cs evaluated with minory modified FORNAX-A code are rather different from default values for HTFP code.

Journal Articles

Characterization of germanium detectors for the measurement of the angular distribution of prompt $$gamma$$-rays at the ANNRI in the MLF of the J-PARC

Takada, Shusuke*; Okudaira, Takuya*; Goto, Fumiya*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; Nakao, Taro*; Sakai, Kenji; Shimizu, Hirohiko*; et al.

Journal of Instrumentation (Internet), 13(2), p.P02018_1 - P02018_21, 2018/02

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 2; Design study of fuel and reactor core

Goto, Minoru; Ueta, Shohei; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

A PuO$$_{2}$$-YSZ fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter was examined based on a thermochemical calculation. A preliminary study on the feasibility of the 3S-TRISO fuel was conducted focusing on the internal pressure. Additionally, a nuclear feasibility of the reactor core was studied. As a result, all the amount of the free-oxygen is captured by a thin ZrC coating under 1600$$^{circ}$$C and coating ZrC on the fuel kernel should be very effective method to suppress the internal pressure. The internal pressure of the 3S-TRISO fuel at 500 GWd/t is lower than that of UO$$_{2}$$ kernel TRISO fuel whose feasibility had been already confirmed and the 3S-TRISO fuel should be feasible. The fuel shuffling allows to achieve 500 GWd/t. The temperature coefficient of reactivity is negative during the operation period and thus the nuclear feasibility of the reactor core should be achievable.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 5; Test and characterization for ZrC coating

Ueta, Shohei; Aihara, Jun; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 4 Pages, 2017/07

To develop the security and safety fuel (3S-TRISO fuel) for Pu-burner high temperature gas-cooled reactor (HTGR), R&D on zirconium carbide (ZrC) directly coated on yttria stabilized zirconia (YSZ) has been started in the Japanese fiscal year 2015. As results of the direct coating test of ZrC on the dummy YSZ particle, ZrC layers with 18 - 21 microns of thicknesses have been obtained with 0.1 kg of particle loading weight. No deterioration of YSZ exposed by source gases of ZrC bromide process was observed by Scanning Transmission Electron Microscope (STEM).

Journal Articles

Nuclear thermal design of high temperature gas-cooled reactor with SiC/C mixed matrix fuel compacts

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Ueta, Shohei; Sumita, Junya; Tachibana, Yukio

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.814 - 822, 2016/11

Japan Atomic Energy Agency (JAEA) has started R&D for apply SiC/C mixed matrix to fuel element of high temperature gas-cooled reactors (HTGRs) to improve oxidation resistance of fuel. Nuclear thermal design of HTGR with SiC/C mixed matrix fuel compacts was carried out as a part of above R&Ds. Nuclear thermal design was carried out based on a small sized HTGR for developing countries, HTR50S. Maximum enrichment of uranium is set to be 10 wt%, because coated fuel particles with 10 wt% uranium have been fabricated in Japan. Numbers of kinds of enrichment and burnable poisons (BPs) were set to be same as those of original HTR50S (3 and 2, respectively). We succeeded in nuclear thermal design of a small sized HTGR which performance was equivalent to original HTR50S, with SiC/C mixed matrix fuel compacts. Based on nuclear thermal design, intactness of coated fuel particles was evaluated to be kept on internal pressure during normal operation.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage, 3; Progress report on NUMO-JAEA collaborative research in FY2013 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Kitamura, Akira; Yoshikawa, Hideki; Oda, Chie; Ishidera, Takamitsu; et al.

JAEA-Research 2014-030, 457 Pages, 2015/03

JAEA-Research-2014-030.pdf:199.23MB

JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and post-closure performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, based on some examples of developing method of hydro-geological structure model, acquired knowledge are arranged using the tree diagram, and model uncertainty and its influence on the evaluation items were discussed. With regard to (2) study on scenario development, the developed approach for "defining conditions" has been reevaluated and improved from practical viewpoints. In addition, the uncertainty evaluation for the effect of use of cementitious material, as well as glass dissolution model, was conducted with analytical evaluation. With regard to (3) study on setting radionuclide migration parameters, based on survey of precedent procedures, multiple-approach for distribution coefficient of rocks was established, and the adequacy of the approach was confirmed though its application to sedimentary rock and granitic rock. Besides, an approach for solubility setting was developed including the procedure of selection of solubility limiting solid phase. The adequacy of the approach was confirmed though its application to key radionuclides.

JAEA Reports

Preliminary evaluation of integrity of coated fuel particles under normal operation in core of small-sized HTGR system HTR50S at 1st. step of Phase I

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Isaka, Kazuyoshi; Ohashi, Hirofumi; Tachibana, Yukio

JAEA-Technology 2014-009, 29 Pages, 2014/05

JAEA-Technology-2014-009.pdf:3.51MB

Japan Atomic Energy Agency (JAEA) is carrying out conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR), HTR50S. In this report, integrity of coated fuel particles (CFPs) is evaluated for core of HTR50S of 1st. step of phase I (first core of HTR50S) under normal operation. CFPs are considered to be failed by fuel kernel migration by temperature gradient in CFPs or corrosion of SiC layer by fission product Pd (Pd corrosion) or increase in internal pressure under normal operation. In this report, integrity of CFPs is to be maintained for each phenomenon.

JAEA Reports

Conceptual design of small-sized HTGR system, 5; Safety design and preliminary safety analysis

Ohashi, Hirofumi; Sato, Hiroyuki; Tazawa, Yujiro; Aihara, Jun; Nomoto, Yasunobu; Imai, Yoshiyuki; Goto, Minoru; Isaka, Kazuyoshi; Tachibana, Yukio; Kunitomi, Kazuhiko

JAEA-Technology 2013-017, 71 Pages, 2014/02

JAEA-Technology-2013-017.pdf:3.64MB

Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S). Though the safety design of HTR50S was determined based on that of the High Temperature Engineering Test Reactor (HTTR) for the early deployment of HTR50S, the shutdown cooling system, which is the forced cooling heat removal system, was categorized as non-safety class to optimize the protection to provide the highest level of safety that can reasonably be achieved, and the vessel cooling system, which is categorized as the safety class system, was designed as a passive safety features. The preliminary safety analysis of HTR50S for the rupture of co-axial hot gas duct in primary cooling system and the tube rupture of steam generator was conducted to confirm the adequacy of the safety design. It was confirmed that the analysis results satisfied the acceptance criteria.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage, 2; Progress report on NUMO-JAEA collaborative research in FY2012 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Hayano, Akira; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Oda, Chie; Kitamura, Akira; Osawa, Hideaki; et al.

JAEA-Research 2013-037, 455 Pages, 2013/12

JAEA-Research-2013-037.pdf:42.0MB

Following FY2011, JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, the tree diagram of methodology of groundwater travel time has been extended for crystalline rock, in addition, tree diagram for sedimentary rock newly has been organized. With regard to (2) study on scenario development, the existing approach has been improved in terms of a practical task, and applied and tested for near field focusing on the buffer. In addition, the uncertainty of some important processes and its impact on safety functions are discussed though analysis. With regard to (3) study on setting radionuclide migration parameters, the approaches for parameter setting have been developed for sorption for rocks and solubility, and applied and tested through parameter setting exercises for key radionuclides.

Journal Articles

Dynamic nuclear self-polarization for measurements of nuclear magnetic moments

Koizumi, Mitsuo; Goto, Jun*; Matsuki, Seishi*; Nakamura, Shoji

Nuclear Instruments and Methods in Physics Research B, 317(Part B), p.689 - 692, 2013/12

 Times Cited Count:1 Percentile:84.29(Instruments & Instrumentation)

Dynamic nuclear self-polarization (DYNASP) is a phenomenon that is observed in the III-V semiconductors. When electrons in the valence band of a semiconductor are optically excited to the conduction band, quite large nuclear polarization suddenly occurs below a critical temperature. This phenomenon was theoretically predicted by Dyakonov and Perel. Our recent work predicted that the electrons excited by circularly polarized laser enhance nuclear polarization near the critical temperature. The mechanism of such a large nuclear polarization would be useful for measurements of nuclear magnetic moments of unstable nuclides. However, the experiment on DYNASP can be found only in a conference report. In order to confirm the phenomenon, we have started the study of DYNASP. Preparation of experiments on DYNASP is in progress. In this paper, we describe the present status of the study of nuclear polarization by using DYNASP from the theoretical and experimental aspects.

Journal Articles

A View of technology maturity assessment to realize fusion reactor by Japanese young researchers

Kasada, Ryuta*; Goto, Takuya*; Fujioka, Shinsuke*; Hiwatari, Ryoji*; Oyama, Naoyuki; Tanigawa, Hiroyasu; Miyazawa, Junichi*; Young Scientists Special Interest Group on Fusion Reactor Realization*

Purazuma, Kaku Yugo Gakkai-Shi, 89(4), p.193 - 198, 2013/04

Japanese young researchers who have interest in realizing fusion reactor have analyzed Technology Readiness Levels (TRL) in Young Scientists Special Interest Group on Fusion Reactor Realization. In this report, brief introduction to TRL assessment and a view of TRL assessment against fusion reactor projects conducting in Japan.

Journal Articles

Decontamination of outdoor school swimming pools in Fukushima after the nuclear accident in March 2011

Saegusa, Jun; Kurikami, Hiroshi; Yasuda, Ryo; Kurihara, Kazuo; Arai, Shigeki; Kuroki, Ryota; Matsuhashi, Shimpei; Ozawa, Takashi; Goto, Hiroaki; Takano, Takao; et al.

Health Physics, 104(3), p.243 - 250, 2013/03

 Times Cited Count:3 Percentile:62.81(Environmental Sciences)

After the Nuclear accident on March 2011, water discharge from many outdoor swimming pools in the Fukushima prefecture was suspended out of concern that radiocesium in the pool water would flow into farmlands. We have reviewed the existing flocculation method for decontaminating pool water and established a practical decontamination method by demonstrating the process at several pools in the Fukushima prefecture.

Journal Articles

A Small-sized HTGR system design for multiple heat applications for developing countries

Ohashi, Hirofumi; Sato, Hiroyuki; Goto, Minoru; Yan, X.; Sumita, Junya; Tazawa, Yujiro*; Nomoto, Yasunobu; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; et al.

International Journal of Nuclear Energy, 2013, p.918567_1 - 918567_18, 2013/00

Japan Atomic Energy Agency (JAEA) has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR) for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750 $$^{circ}$$C and 900 $$^{circ}$$C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to deploy it in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat application, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system.

109 (Records 1-20 displayed on this page)