Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 61

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Umeda, Naotaka; Hiratsuka, Junichi; Ichikawa, Masahiro; Watanabe, Kazuhiro; Grisham, L. R.*; Tsumori, Katsuyoshi*; et al.

Review of Scientific Instruments, 87(2), p.02B144_1 - 02B144_4, 2016/02

 Times Cited Count:6 Percentile:60.84(Instruments & Instrumentation)

Time evolution of spatial profile of negative ion production during an initial conditioning phase has been experimentally investigated in the JT-60 negative ion source. Up to 0.4 g Cs injection, there is no enhancement of the negative ion production and no observation of the Cs emission signal in the source, suggesting the injected Cs is mainly deposited on the water-cooled wall near the nozzle. After 0.4 g Cs injection, enhancement of the negative ion production appeared only at the central segment of the PG. The calculation of the Cs neutral/ion trajectories implied that a part of Cs was ionized near the nozzle and was transported to this area. The expansion of the area of the surface production was saturated after ~2 g Cs injection corresponding to 6000 s discharge time. From the results, it is found that Cs ionization and its transport plays an important role for the negative ion production.

Journal Articles

Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

Kojima, Atsushi; Hanada, Masaya; Tobari, Hiroyuki; Nishikiori, Ryo; Hiratsuka, Junichi; Kashiwagi, Mieko; Umeda, Naotaka; Yoshida, Masafumi; Ichikawa, Masahiro; Watanabe, Kazuhiro; et al.

Review of Scientific Instruments, 87(2), p.02B304_1 - 02B304_5, 2016/02

 Times Cited Count:5 Percentile:60.84(Instruments & Instrumentation)

Optimization techniques of the vacuum insulation design have been developed in order to realize a reliable voltage holding capability of Multi-Aperture Multi-Grid accelerators for giant negative ion sources for nuclear fusion. In this method, the nested multilayer configuration of each acceleration stage in the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages were based on the past experimental results of the area effect and the multi-aperture effect on the voltage holding capability. Moreover, total voltage holding capability of multi-stage was estimated by taking the multi-stage effect into account, which was experimentally obtained in this time. In this experiment, the multi-stage effect appeared as the superposition of breakdown probabilities in each acceleration stage, which suggested that multi-stage effect can be considered as the voltage holding capability of the single acceleration gap having the total area and aperture. The analysis on the MAMuG accelerator for JT-60SA agreed with the past gap-scan experiments with an accuracy of less than 10% variation.

Journal Articles

Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

Hanada, Masaya; Kojima, Atsushi; Tobari, Hiroyuki; Nishikiori, Ryo; Hiratsuka, Junichi; Kashiwagi, Mieko; Umeda, Naotaka; Yoshida, Masafumi; Ichikawa, Masahiro; Watanabe, Kazuhiro; et al.

Review of Scientific Instruments, 87(2), p.02B322_1 - 02B322_4, 2016/02

 Times Cited Count:10 Percentile:40.85(Instruments & Instrumentation)

In International Thermo-nuclear Experimental Reactor (ITER) and JT-60 Super Advanced (JT-60 SA), the D$$^{-}$$ ion beams of 1 MeV, 40 A and 0.5 MeV, 22 A are required to produce 3600 s and 100 s for the neutral beam injection, respectively. In order to realize such as powerful D$$^{-}$$ ion beams for long duration time, Japan Atomic Energy Agency (JAEA) has energetically developed cesium (Cs)-seeded negative ion sources (CsNIS) and electro-static multi-aperture and multi-stage accelerators (MAMuG accelerator) which are chosen as the reference design of ITER and JT-60 SA. In the development of the CsNIS, a 100s production of the H$$^{-}$$ ion beam has been demonstrated with a beam current of 15 A by modifying the JT-60 negative ion source. At the higher current, the long pulse production of the negative ions has been tried by the mitigation of the arcing in the plasma inside the ion source. As for the long pulse acceleration of the negative ions in the MAMuG accelerator, the beam steering angle has been controlled to reduce the power loading of the acceleration grids A pulse duration time has been significantly extended from 0.4 s to 60 s at reasonable beam power for ITER requirement. The achieved pulse duration time is limited by the capacity of the power supplies in the test stand. In the range of $$<$$ 60 s, there are no degradations of beam optics and voltage holding capability in the accelerator. It leads to the further extension of the pulse duration time at higher power density. This paper reports the latest results of development on the negative ion source and accelerator at JAEA.

Journal Articles

22A beam production of the uniform negative ions in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Hatayama, Akiyoshi*; Shibata, Takanori*; Yamamoto, Takashi*; Akino, Noboru; Endo, Yasuei; et al.

Fusion Engineering and Design, 96-97, p.616 - 619, 2015/10

 Times Cited Count:9 Percentile:25.63(Nuclear Science & Technology)

In JT-60 Super Advanced for the fusion experiment, 22A, 100s negative ions are designed to be extracted from the world largest ion extraction area of 450 mm $$times$$ 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The original tent-shaped filter significantly improved the logitudunal uniformity of the extracted H$$^{-}$$ ion beams. The logitudinal uniform areas within a $$pm$$10 deviation of the beam intensity were improved from 45% to 70% of the ion extraction area. However, this improvement degrades a horizontal uniformity. For this, the uniform areas was no more than 55% of the total ion extraction area. In order to improve the horizontal uniformity, the filter strength has been reduced from 660 Gasus$$cdot$$cm to 400 Gasus$$cdot$$cm. This reduction improved the horizontal uniform area from 75% to 90% without degrading the logitudinal uniformity. This resulted in the improvement of the uniform area from 45% of the total ion extraction areas. This improvement of the uniform area leads to the production of a 22A H$$^{-}$$ ion beam from 450 mm $$times$$ 1100 mm with a small amount increase of electron current of 10%. The obtained beam current fulfills the requirement for JT-60SA.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:28 Percentile:8.78(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

Journal Articles

Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

Kojima, Atsushi; Hanada, Masaya; Yoshida, Masafumi; Umeda, Naotaka; Hiratsuka, Junichi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Grisham, L. R.*; NB Heating Technology Group

AIP Conference Proceedings 1655, p.060002_1 - 060002_10, 2015/04

 Times Cited Count:6 Percentile:7.5

In this paper, the recent activities on the new test stand are reported toward demonstration of the long pulse production for 22A, 100s negative ion beams. As for the temperature control of the plasma grid, a prototype of the grid with cooling/heating by circulating a high-temperature fluorinated fluid has been improved to cover the full extraction area by using 5 segments of the PG. These grids were found to have a capability to control the temperature with a time constant of 10s as well as the prototype grid. As a result, 15A negative ion beams for 100s have been achieved.

Journal Articles

100s extraction of negative ion beams by using actively temperature-controlled plasma grid

Kojima, Atsushi; Hanada, Masaya; Yoshida, Masafumi; Tobari, Hiroyuki; Kashiwagi, Mieko; Umeda, Naotaka; Watanabe, Kazuhiro; Grisham, L. R.*

Review of Scientific Instruments, 85(2), p.02B312_1 - 02B312_5, 2014/02

 Times Cited Count:10 Percentile:47.55(Instruments & Instrumentation)

The negative ion source for JT-60SA is designed to produce high power and long pulse beams with a beam energy of 500 keV, a negative ion current of 22A and a pulse duration of 100s. One of the key issues toward long pulse production of such high-current beams is the control of the surface temperature on the plasma grid (PG) where cesium is layered. In order to optimize cesium layer on PG for long pulse duration, we have developed an actively cooled PG where fluorinated fluids having high boiling point of 270$$^{circ}$$C is circulated. While the surface temperature of the PG in the JT-60 negative ion source has been kept at 170$$^{circ}$$C for 100s with ramp-up time of 7s, stable long pulse beam extractions of 100s have been obtained. This current density is 90% of the required current density for JT-60 SA. The further increase of the current density is expected by optimizing the arc discharge power.

Journal Articles

Improvement of uniformity of the negative ion beams by Tent-shaped magnetic field in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

Review of Scientific Instruments, 85(2), p.02B314_1 - 02B314_4, 2014/02

 Times Cited Count:11 Percentile:47.55(Instruments & Instrumentation)

Non-uniformity of the negative ion beams in the JT-60 negative ion source was improved by modifying an external magnetic field to a tent-shaped magnetic field for reduction of the local heat loads in the source. Distributions of the source plasmas (H$$^{+}$$ ions and H$$^{0}$$ atoms) of the parents of H$$^{-}$$ ions converted on the cesium covered plasma grids were measured by Langmuir probes and emission spectroscopy. Beam intensities of the H$$^{-}$$ ions extracted from the plasma grids were measured by IR camera from the back of the beam target plate. The tent-shaped magnetic field prevented the source plasmas to be localized by B $$times$$ grad B drift of the primary electrons emitted from the filaments in the arc chamber. As a result, standard derivation of the H$$^{-}$$ ions beams was reduced from 14% (the external magnetic field) to 10% (the tent-shaped magnetic field) without reduction of an activity of the H$$^{-}$$ ion production.

Journal Articles

Origin of non-uniformity of the source plasmas in JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

Plasma and Fusion Research (Internet), 8(Sp.1), p.2405146_1 - 2405146_4, 2013/11

Distributions of H$$^{0}$$ and H$$^{+}$$ in the source plasmas produced at the end-plugs of JT-60 negative ions source were measured by Langmuir probes and emission spectroscopy in order to experimentally investigate the cause of lower density of the negative ions extracted from end-plugs in the source. Densities of H$$^{0}$$ and H$$^{+}$$ in end-plugs of the plasma grid in the source were compared with those in the center regions. As a result, lower density of the negative ion at the edge was caused by lower beam optics due to lower and higher density of the H$$^{0}$$ and H$$^{+}$$.

Journal Articles

Long-pulse production of the negative ion beams for JT-60SA

Kojima, Atsushi; Hanada, Masaya; Yoshida, Masafumi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Umeda, Naotaka; Tobari, Hiroyuki; Grisham, L. R.*; et al.

Fusion Engineering and Design, 88(6-8), p.918 - 921, 2013/10

 Times Cited Count:6 Percentile:47.63(Nuclear Science & Technology)

In this paper, the recent activities are reported toward demonstration of the long pulse production. As for the improvement of uniform beam current profile, a symmetric magnetic field configuration for the source plasma production, a so-called tent-shaped filter, was found to be effective to improve the uniformity of the beam current profile. A similar configuration is applied to the JT-60 negative ion source whose plasma size is 1220 mm $$times$$ 564 mm. An estimation from trajectory calculations of primary electrons with the symmetric magnetic field configuration showed that the primary electrons were distributed uniformly in a longitudinal direction. As for the temperature control of the plasma grid, a prototype of the grid with cooling/heating by circulating a high-temperature fluorinated fluid has been developed. This grid was found to have a capability to control the temperature with a time constant of 10 s by considering the physical properties of the fluid.

Journal Articles

Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI

Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Tobari, Hiroyuki; Yamanaka, Haruhiko; Watanabe, Kazuhiro; Inoue, Takashi; DeEsch, H. P. L.*; Grisham, L. R.*; et al.

AIP Conference Proceedings 1515, p.227 - 236, 2013/02

 Times Cited Count:8 Percentile:4.75

In a five stage multi-aperture multi-grid (MAMuG) accelerator for the ITER neutral beam injector (NBI), 1 MeV, 40 A D$$^-$$ ion beam is required for 1 hour. However, beamlets are deflected due to (1) magnetic field for electron suppression and (2) space charge repulsion between beamlets, and consequently, cause excess grid heat load. A three dimensional beam analysis has been carried out to compensate the beamlet deflections. This paper shows that the beamlet deflections due to (1) and (2) are compensated by an aperture offset of only 0.6 mm applied to the aperture of 17 mm in diameter in the extractor and by a metal bar attached around aperture area beneath the extractor, respectively. When the metal bar is increased to 3 mm in thickness and installed 30 mm away from the aperture area, the beamlet is steered gently by the weaker electric field distortion. The beam optics was confirmed not deteriorated by those compensations. The presentation also discusses application of these compensation techniques to the ITER design.

Journal Articles

Vacuum insulation of the high energy negative ion source for fusion application

Kojima, Atsushi; Hanada, Masaya; Hilmi, A.*; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Umeda, Naotaka; Tobari, Hiroyuki; Kobayashi, Shinichi*; et al.

Review of Scientific Instruments, 83(2), p.02B117_1 - 02B117_5, 2012/02

 Times Cited Count:14 Percentile:38.19(Instruments & Instrumentation)

Production of 500 keV, 3 A beams has been successfully achieved in the JT-60 negative by overcoming the low voltage holding of the accelerator. Toward the design of next ion source, database for the voltage holding capability based on experimental results is required and obtained. As a result, the voltage holding capability was found to vary with 67 N power of -0.15 and with 31.7 S power of -0.125 where N is the aperture number and S is the anode surface area. When N = 1100 and S = 2 m$$^{2}$$ are applied to the design of JT-60SA ion source, the factors C are estimated to be 23 and 29, respectively. Therefore, the influence of the local electric field around the apertures is stronger than that of the surface area.

Journal Articles

Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector

Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; DeEsch, H. P. L.*; Grisham, L. R.*; Boilson, D.*; Hemsworth, R. S.*; Tanaka, Masanobu*; Tobari, Hiroyuki; Watanabe, Kazuhiro; et al.

Review of Scientific Instruments, 83(2), p.02B119_1 - 02B119_3, 2012/02

 Times Cited Count:9 Percentile:52.47(Instruments & Instrumentation)

In a multi-aperture multi-grid (MAMuG) accelerator of the ITER neutral beam injector (NBI), 1 MeV, 40 A D$$^{-}$$ ion beam is required for 3600 s. Suppression of grid power loading by the direct interception of deflected beamlets is one of the critical issues to realize this accelerator. The beamlets are deflected due to space charge repulsion among beamlets/beam groups and magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid supports. To examine such complicated beamlet deflections and design the compensating methods, a three-dimensional beam analysis has been applied to the ITER accelerator. As the simulation model, a 1/4 accelerator model including step/edge of the grid supports is constructed. As results, compensation methods of the beamlet deflection, that it, a metal bar of 1 mm thick around the aperture area, and an aperture offset of 1 mm, were designed.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:8 Percentile:39.85(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Acceleration of 500 keV negative ion beams by tuning vacuum insulation distance on JT-60 negative ion source

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Taniguchi, Masaki; Kashiwagi, Mieko; Inoue, Takashi; Umeda, Naotaka; Watanabe, Kazuhiro; Tobari, Hiroyuki; Kobayashi, Shinichi*; et al.

AIP Conference Proceedings 1390, p.466 - 475, 2011/09

 Times Cited Count:2 Percentile:43.94

Voltage holding tests by using JT-60 negative ion source and small electrodes was carried out because JT-60 negative ion source had a critical problem about low voltage holding capability for long time. As a result, the voltage holding capability is decreased with the increase of area where local electric field is generated, as well as the surface area according to existing scaling low about surface area. Therefore, in order to improve the voltage holding without changing the existing accelerator, the voltage holding test was carried out by extending gap lengths of the negative ion source. In order to improve the voltage holding, beam radiation shield needs to be optimized additionally. As a result, the voltage holding has been improved to 500 kV and stabilized. By using this modified ion source, negative ion beams of 500 keV up to 3A has been successfully produced.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:5 Percentile:21.02

no abstracts in English

Journal Articles

Study of beamlet deflection and its compensations in a MeV accelerator

Kashiwagi, Mieko; Inoue, Takashi; Taniguchi, Masaki; Umeda, Naotaka; Grisham, L. R.*; Dairaku, Masayuki; Takemoto, Jumpei; Tobari, Hiroyuki; Tsuchida, Kazuki; Watanabe, Kazuhiro; et al.

AIP Conference Proceedings 1390, p.457 - 465, 2011/09

 Times Cited Count:7 Percentile:13.26

In a five stage multi-aperture and multi-grid (MAMuG) accelerator in JAEA, beam acceleration tests are in progress toward 1 MeV, 200 A/m$$^{2}$$ H$$^{-}$$ ion beams for ITER. The 1 MV voltage holding has been successfully demonstrated for 4000 s with the accelerator of expanded gap length that lowered local electric field concentrations. The led to increase of the beam energy up to 900 keV-level. However, it was found that beamlets were deflected more in long gaps and direct interceptions of the deflected beamlet caused breakdowns. The beamlet deflection and its compensation methods were studied utilizing a three-dimensional multi beamlet analysis. The analysis showed that the 1 MeV beam can be compensated by a combination of the aperture offset of 0.8 mm applied in the electron suppression (ESG) and the metal bar called a field shaping plate with a thickness of 1 mm attached beneath the ESG. The paper reports analytical predictions and experimental results of the MAMuG accelerator.

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:40 Percentile:11.42(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Commissioning results of the KSTAR neutral beam system

Bae, Y. S.*; Park, Y. M.*; Kim, J. S.*; Han, W. S.*; Kwak, S. W.*; Chang, Y. B.*; Park, H. T.*; Song, N. H.*; Chang, D. H.*; Jeong, S. H.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 9 Pages, 2011/03

The neutral beam injection (NBI) system is designed to provide the ion heating and current drive for the high performance operation and long pulse operation of the Korean Superconducting Tokamak Advanced Research (KSTAR). The KSTAR NBI consists of two beam lines. Each beam line contains three ion sources of which one ion source has been designed to deliver more than 2.5 MW of deuterium neutral beam power with maximum 120-keV beam energy. Consequently, the final goal of the KSTAR NBI system aims to inject more than 14 MW of deuterium beam power with the two beam lines. According to the planned NBI system, the first NBI system is to demonstrate the beam injection from one ion source into the KSTAR tokamak plasma in 2010 campaign including the system commissioning of each components and subsystems. In this paper, the construction and the commissioning of the first NBI system with one ion source is presented.

61 (Records 1-20 displayed on this page)