Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Guo, B.*; Chen, H.*; Chong, Y.*; Mao, W.; Harjo, S.; Gong, W.; Zhang, Z.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 268, p.119780_1 - 119780_11, 2024/04
Times Cited Count:6 Percentile:95.58(Materials Science, Multidisciplinary)Yang, D. S.*; Wu, Y.*; Kanatzidis, E. E.*; Avila, R.*; Zhou, M.*; Bai, Y.*; Chen, S.*; Sekine, Yurina; Kim, J.*; Deng, Y.*; et al.
Materials Horizons, 10(11), p.4992 - 5003, 2023/09
Times Cited Count:12 Percentile:80.32(Chemistry, Multidisciplinary)This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three-dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the sweat pH, with laboratory grade accuracy and sensitivity.
Guo, B.*; Mao, W.; Chong, Y.*; Shibata, Akinobu*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01
Times Cited Count:11 Percentile:71.18(Materials Science, Multidisciplinary)Sheng, Q.*; Kaneko, Tatsuya*; Yamakawa, Kohtaro*; Guguchia, Z.*; Gong, Z.*; Zhao, G.*; Dai, G.*; Jin, C.*; Guo, S.*; Fu, L.*; et al.
Physical Review Research (Internet), 4(3), p.033172_1 - 033172_14, 2022/09
Jaladurgam, N. R.*; Lozinko, A.*; Guo, S.*; Harjo, S.; Colliander, M. H.*
Materialia, 22, p.101392_1 - 101392_4, 2022/05
Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:4 Percentile:24.65(Astronomy & Astrophysics)Guo, B.*; Xiong, Y.*; Chen, W.*; Saslow, S. A.*; Kozai, Naofumi; Onuki, Toshihiko*; Dabo, I.*; Sasaki, Keiko*
Journal of Hazardous Materials, 389, p.121880_1 - 121880_11, 2020/05
Times Cited Count:50 Percentile:89.28(Engineering, Environmental)Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, R.; Lguillon, R.; Ogawa, Tatsuhiko; Soldner, T.*; K
ster, U.*; Pollitt, A.*; Hambsch, F.-J.*; et al.
Physical Review C, 100(4), p.044610_1 - 044610_7, 2019/10
Times Cited Count:13 Percentile:72.26(Physics, Nuclear)Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.
Lab on a Chip, 19(9), p.1545 - 1555, 2019/05
Times Cited Count:181 Percentile:99.69(Biochemical Research Methods)This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.
Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, R.; Lguillon, R.*; Ogawa, Tatsuhiko; Soldner, T.*; Hambsch, F.-J.*; A
che, M.*; Astier, A.*; et al.
Nuclear Instruments and Methods in Physics Research A, 906, p.88 - 96, 2018/10
Times Cited Count:3 Percentile:26.45(Instruments & Instrumentation)We have developed a new setup to measure prompt fission -ray spectra in neutron induced fission up to energies sufficient to reveal the structure associated with giant dipole resonances of fission fragments. The setup consists of multi-wire proportional counters, to detect both fission fragments in coincidence, and two large volume (101.6 mm in diameter and 127.0 mm in length) LaBr
(Ce) scintillators, to measure the
-rays. The setup was used to obtain the prompt fission
-ray spectrum for thermal neutron induced fission of
U at the PF1B cold-neutron beam facility of the Institut Laue-Langevin, Grenoble, France. We have successfully measured the
-ray spectrum up to energies of about 20 MeV, what extends the currently known
-ray spectrum limit to higher energies by approximately a factor of two.
Phan, L. H. S.*; Ohara, Yohei*; Kawata, Ryo*; Liu, X.*; Liu, W.*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Tagami, Hirotaka
Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10
Self-leveling behavior of core fuel debris beds is one of the key phenomena for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The SIMMER code has been developed for CDA analysis of SFRs, and the code has been successfully applied to numerical simulations for key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, in SIMMER's fluid-dynamics model, it is always difficult to represent the strong interactions between solid particles as well as the discrete particle characteristics. To solve this problem, a new method has been developed by combining the multi-fluid model of the SIMMER code with the discrete element method (DEM) for the solid phase to reasonably simulate the particle behaviors as well as the fluid-particle interactions in multi-phase flows. In this study, in order to validate the multi-fluid model of the SIMMER code coupled with DEM, numerical simulations were performed on a series of self-leveling experiments using a gas injection method in cylindrical particle beds. The effects of friction coefficient on the simulation results were investigated by sensitivity analysis. Though more extensive validations are needed, the reasonable agreement between simulation results and corresponding experimental data preliminarily demonstrates the potential ability of the present method in simulating the self-leveling behaviors of debris bed. It is expected that the SIMMER code coupled with DEM is a prospective computational tool for analysis of safety issues related to solid particle debris bed in SFRs.
Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Lugaro, M.*; Karakas, A. I.*; Makii, Hiroyuki; Mohr, P.*; Su, J.*; Li, Y. J.*; et al.
Astrophysical Journal, 848(2), p.98_1 - 98_8, 2017/10
Times Cited Count:6 Percentile:23.14(Astronomy & Astrophysics)Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, R.; Lguillon, R.; Ogawa, Tatsuhiko; Soldner, T.*; Hambsch, F.-J.*; Astier, A.*; Pollitt, A.*; et al.
EPJ Web of Conferences, 146, p.04036_1 - 04036_4, 2017/09
Times Cited Count:4 Percentile:88.97(Nuclear Science & Technology)The measurement of the prompt fission -ray spectrum (PFGS) is quite important to study the de-excitation process of neutron-rich fission fragments as well as to generate data required to design a generation-IV reactors. The PFGS measured for spontaneous fission of
Cf shows a broad hump at energies more than 8 MeV. This is interpreted as a giant dipole resonance (GDR) of the fragments centered around 15 MeV. To understand how the GDR is populated in the fission process, one needs to measure the PFGS for the reactions with the mass yields different from the spontaneous fission of
Cf, such as (n,f). The measurements of the PFGS for (n,f), however, are limited less than 9 MeV even in the recent experiment. This prompts us to make a new measurement to extend the know PFGS up to 20 MeV. The measurement has been carried out at the PF1B beam line of Institut Laue-Langevin. In this contribution we will present the results obtained the measurement.
Tam, D. M.*; Song, Y.*; Man, H.*; Cheung, S. C.*; Yin, Z.*; Lu, X.*; Wang, W.*; Frandsen, B. A.*; Liu, L.*; Gong, Z.*; et al.
Physical Review B, 95(6), p.060505_1 - 060505_6, 2017/02
Times Cited Count:24 Percentile:69.55(Materials Science, Multidisciplinary)Frandsen, B. A.*; Liu, L.*; Cheung, S. C.*; Guguchia, Z.*; Khasanov, R.*; Morenzoni, E.*; Munsie, T. J. S.*; Hallas, A. M.*; Wilson, M. N.*; Cai, Y.*; et al.
Nature Communications (Internet), 7, p.12519_1 - 12519_8, 2016/08
Times Cited Count:34 Percentile:75.84(Multidisciplinary Sciences)Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Makii, Hiroyuki; Su, J.*; Li, Y. J.*; Nishinaka, Ichiro; Hirose, Kentaro; Han, Y. L.*; et al.
Physical Review C, 94(1), p.015804_1 - 015804_5, 2016/07
Times Cited Count:7 Percentile:46.99(Physics, Nuclear)Matthi, D.*; Ehresmann, B.*; Lohf, H.*; K
hler, J.*; Zeitlin, C.*; Appel, J.*; Sato, Tatsuhiko; Slaba, T. C.*; Martin, C.*; Berger, T.*; et al.
Journal of Space Weather and Space Climate (Internet), 6, p.A13_1 - A13_17, 2016/03
Times Cited Count:71 Percentile:92.89(Astronomy & Astrophysics)The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. In this work, several models such as GEANT4, PHITS, and HZETRN/OLTARIS are used to predict the radiation environment caused by galactic cosmic rays on Mars in order to compare and validate them with the experimental results. Although good agreement is found in many cases for GEANT4, PHITS and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude, discrepancies in certain particle spectra. We have found that RAD data is helping make better choices of input parameters and physical models. These results help to predict dose rates for future manned missions as well as to perform shield optimization studies.
Geprgs, S.*; Kehlberger, A.*; Coletta, F.*; Qiu, Z.*; Guo, E.-J.*; Schulz, T.*; Mix, C.*; Meyer, S.*; Kamra, A.*; Althammer, M.*; et al.
Nature Communications (Internet), 7, p.10452_1 - 10452_6, 2016/02
Times Cited Count:168 Percentile:97.40(Multidisciplinary Sciences)Tagami, Hirotaka; Cheng, S.; Tobita, Yoshiharu; Guo, L.*; Zhang, B.*; Morita, Koji*
Proceedings of 22nd International Conference on Nuclear Engineering (ICONE-22) (DVD-ROM), 8 Pages, 2014/07
The object of this study is to develop new analytical methods to simulate unique phenomena in self-leveling behavior and implement it to SFR safety analysis code. The new methods are developed with assuming that the debris bed behaves as Bingham fluid from this feature. They are categorized into two main parts. The first part is particle interaction models to model the effect of particle-particle collisions. The second part is a large deformation method, which simulates Bingham fluid characteristic of debris bed. An experimental study of self-leveling behavior is analyzed to validate the new methods. The assessment results show that these methods provide a basis to develop analytical methods of self-leveling behavior of debris bed in the safety assessment of SFRs.
Li, G. S.*; Liu, M. L.*; Zhou, X. H.*; Zhang, Y. H.*; Liu, Y. X.*; Zhang, N. T.*; Hua, W.*; Zheng, Y. D.*; Fang, Y. D.*; Guo, S.*; et al.
Physical Review C, 89(5), p.054303_1 - 054303_9, 2014/05
Times Cited Count:5 Percentile:36.81(Physics, Nuclear)High-spin states of Pt have been reinvestigated using the
Yb(
O, 4
) reaction at a beam energy of 88 MeV. The previously known positive parity band associated with the
(
being
or
) configuration has been revised and extended significantly. A new negative parity band has been established and proposed to be based on the
configuration. Possible structure evolution of the yrast line from predominantly vibrational to rotational with increasing spin is discussed with the help of E
over spin curves. Additionally, calculations of Total Routhian surfaces have been performed to investigate the band properties.