Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Lopez-Martens, A.*; Henning, G.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.
EPJ Web of Conferences, 131, p.03001_1 - 03001_6, 2016/12
Times Cited Count:1 Percentile:42.61(Chemistry, Inorganic & Nuclear)Fission barrier height and its angular-momentum dependence have been measured for the first time in the nucleus with the atomic number greater than 100. The entry distribution method, which can determine the excitation energy at which fission starts to dominate the decay process, was applied to No. The fission barrier of
No was found to be 6.6 MeV at zero spin, indicating that the
No is strongly stabilized by the nuclear shell effects.
Henning, G.*; Lopez-Martens, A.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.
EPJ Web of Conferences, 66, p.02046_1 - 02046_8, 2014/03
Times Cited Count:3 Percentile:68.16(Physics, Nuclear)Fission barrier heights of No have been determined through the entry distribution method. The entry distribution is the initial distribution of excitation energy and spin from which the
deexcitation starts in the fusion-evaporation reaction. The initial distribution is extracted from measured
-ray multiplicity and total
-ray energy. This paper describes the details of the entry distribution method, and reports the first determination of the fission barrier heights of
No, which is the heaviest nucleus whose fission barrier has been measured.