Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:71.37(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Oral presentation

The Generation of the high energy protons with J-KAREN laser system at JAEA

Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Tanimoto, Tsuyoshi; Sakaki, Hironao; Hori, Toshihiko; Sagisaka, Akito; Yogo, Akifumi; Fukuda, Yuji; Kanasaki, Masato; et al.

no journal, , 

We present the results of the experiment of laser-driven proton acceleration with the interaction between laser and thin foil target. The maximum energy of the laser-driven protons increases as the intensity of the laser increases. In order to accelerate the proton beam toward higher energy with the limited energy of laser, we need to increase the intensity of the laser. For that purpose, we upgraded the laser mirrors in the beam line. As a result the intensity of the laser increases about one oreder of magnitude. With the tape target, we obtain proton beam whose maximum energy is 23 MeV. We also conducted the plasma mirror to increase the contrast of the laser. We show the detail of the proton acceleration results with the plasma mirror.

Oral presentation

Laser-driven proton acceleration experiment with high contrast Ti:Saplaser at JAEA

Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Tanimoto, Tsuyoshi; Sakaki, Hironao; Hori, Toshihiko; Sagisaka, Akito; Yogo, Akifumi; Fukuda, Yuji; Kanasaki, Masato; et al.

no journal, , 

We present the results of the experiment of laser-driven proton acceleration by the interaction between laser and thin foil target. The maximum energy of the laser-driven protons increases as the intensity of the laser increases. In order to accelerate the proton beam toward higher energy with the limited energy of laser, we need to increase the intensity of the laser. For that purpose, we upgraded the laser mirrors in the beam line. As a result the intensity of the laser increases about one oreder of magnitude. With the tape target, we obtain proton beam whose maximum energy is 23 MeV. We also conducted the plasma mirror to increase the contrast of the laser. We show the detail of the proton acceleration results with the plasma mirror and nano-meter target.

3 (Records 1-3 displayed on this page)
  • 1