Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 200

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of the high-power spallation neutron target of J-PARC

Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Wakai, Eiichi; Futakawa, Masatoshi

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03

The cross-flow type target was developed as the basic design of mercury target in J-PARC, and the design has been improved to realize the MW-class pulsed spallation neutron source. When the high-power and short-pulsed proton beam is injected into the mercury target, pressure waves are generated in mercury by rapid heat generation. The pressure waves induce the cavitation damages on the target vessel. Two countermeasures were adopted, namely, the injection of microbubbles into mercury and the double walled structure at the beam window. The bubble generator was installed in the target vessel to absorb the volume inflation of mercury and mitigate the pressure waves. Also, the double walled target vessel was designed to suppress the cavitation damage by the large velocity gradient of rapid mercury flow in the narrow channel of double wall. Finally, we could attain 1 MW beam operation with the duration time of 36.5 hours in 2020, and achieved the long term stable operation with 740 kW from April in 2021. This report shows the technical development of the high-power mercury target vessel in view of thermal hydraulics to attain 1 MW operation.

Journal Articles

Slow electronic dynamics in the paramagnetic state of UTe$$_2$$

Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Haga, Yoshinori; Tokiwa, Yoshifumi; Opletal, P.; Fujibayashi, Hiroyuki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; et al.

Journal of the Physical Society of Japan, 91(2), p.023707_1 - 023707_5, 2022/02

$$^{125}$$Te NMR experiments in field ($$H$$) applied along the easy magnetization axis (the $$a$$-axis) revealed slow electronic dynamics developing in the paramagnetic state of UTe$$_2$$. The observed slow fluctuations are concerned with a successive growth of long-range electronic correlations below 30$$-$$40 K, where the spin susceptibility along the hard magnetization axis (the $$b$$-axis) shows a broad maximum. The experiments also imply that tiny amounts of disorder or defects locally disturb the long-range electronic correlations and develop an inhomogeneous electronic state at low temperatures, leading to a low temperature upturn observed in the bulk-susceptibility in $$H|a$$. We suggest that UTe$$_2$$ would be located on the paramagnetic side near an electronic phase boundary, where either the magnetic or Fermi-surface instability would be the origin of the characteristic fluctuations.

Journal Articles

Effect of gas microbubble injection and narrow channel structure on cavitation damage in mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

Materials Science Forum, 1024, p.111 - 120, 2021/03

The mercury target vessel for the at the J-PARC neutron source is severely damaged by the cavitation caused by proton beam-induced pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the vessel. In addition, gas microbubbles were injected into the mercury to suppress the pressure waves. The front end of the vessel was cut out to inspect the effect of the damage mitigation technologies on the interior surface. The results showed that the double-walled target facing the mercury with gas microbubbles operating at 1812 MWh for an average power of 434 kW had equivalent damage to the single-walled target without microbubbles operating 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel was clearly smaller than it was on the wall facing the bubbling mercury

Journal Articles

New design of high power mercury target vessel of J-PARC

Wakui, Takashi; Wakai, Eiichi; Kogawa, Hiroyuki; Naoe, Takashi; Hanano, Kohei*; Haga, Katsuhiro; Shimada, Tsubasa*; Kanomata, Kenichi*

Materials Science Forum, 1024, p.145 - 150, 2021/03

To realize a high beam power operation at the J-PARC, a mercury target vessel covered with water shroud was developed. In the first step, to realize an operation at 500 kW, the basic structure of the initial design was followed and the connection method between the mercury vessel and the water shroud was changed. Additionally, the operation at a beam power of 500 kW was realized in approximately eight months. In the second step, to realize the operation at 1 MW, the new structure in which only rear ends of vessels were connected was investigated. Cooling of the mercury vessel is used to reduce thermal stress and thick vessels of the water shroud are used to increase stiffness for the internal pressure; therefore, it was adopted. The stress in each vessel was lower than the allowable stress based on the pressure vessel code criteria prescribed in the Japan Industrial Standard, and confirmation was obtained that the operation with a beam power of 1 MW could be conducted.

Journal Articles

Pressure wave induced sound measurement for diagnosing the operation status of the J-PARC pulsed spallation neutron source

Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Teshigawara, Makoto; Haga, Katsuhiro; Futakawa, Masatoshi

Nuclear Instruments and Methods in Physics Research A, 982, p.164566_1 - 164566_6, 2020/12

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

A liquid mercury target for the spallation neutron source is installed in the J-PARC. The liquid mercury is enclosed with the multi-walled stainless steel vessel. At the time of highly intense proton beams hits the target at a repetition rate of 25 Hz, pressure waves, that causes cavitation erosion, are generated owing the rapidly thermal expansion of mercury. We have installed the target diagnostic system consisting of a laser Doppler vibrometer (LDV) and a dynamic microphone to remotely investigate the structural integrity of the target under high-radiation environment. In this study, aiming to understand correlation between the acoustic vibration and the operation conditions such as the proton beam power and beam profile, proton beam induced acoustic vibration was measured by parametrically changing the target operation conditions. The result showed that the sound is well correlated with the operation conditions.

Journal Articles

Devil's staircase transition of the electronic structures in CeSb

Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.

Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06

 Times Cited Count:3 Percentile:42.38(Multidisciplinary Sciences)

Journal Articles

Water leakage due to the welding defect and improvement to reach 1-MW beam operation in the mercury target of J-PARC

Kogawa, Hiroyuki; Wakui, Takashi; Naoe, Takashi; Haga, Katsuhiro; Takada, Hiroshi; Futakawa, Masatoshi

Journal of Nuclear Science and Technology, 57(5), p.487 - 494, 2020/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Neutron flux per pulse reached world record at neutron source in the J-PARC. In the J-PARC, mercury target system is used as a spallation neutron source. A target vessel has the multi-walled protection system that comprises a mercury vessel enclosed with a double-walled water shroud. This is to prevent the leakage of the mercury outside the mercury vessel. The multi-walled structure needed to be complicated with a lot of welding lines. However, during the operation, we faced an unscheduled shutdown due to water leakage to the intermediate layer between the mercury vessel and water shroud. An investigation on the cause of the leakage was carried out. It is deduced that the leakage path was formed due to the crack propagation from welding defects that is caused by the complicated multi-walled structure. The crack propagation is attributed to the repeated stress by pressure waves generated in the mercury target. Based on the investigation results, the design was improved to remove the welding line on the complicated structure and to realize the stable operation with 1 MW proton beam.

Journal Articles

The $$f$$-electron state of the heavy fermion superconductor NpPd$$_5$$Al$$_2$$ and the isostructural family

Metoki, Naoto; Aczel, A. A.*; Aoki, Dai*; Chi, S.*; Fernandez-Baca, J. A.*; Griveau, J.-C.*; Hagihara, Masato*; Hong, T.*; Haga, Yoshinori; Ikeuchi, Kazuhiko*; et al.

JPS Conference Proceedings (Internet), 30, p.011123_1 - 011123_6, 2020/03

Rare earths (4$$f$$) and actinides (5$$f$$) provide variety of interesting states realized with competing interactions between the increasing number of $$f$$ electrons. Since crystal field splitting of many-body $$f$$ electron system is smaller than the bandwidth, (1) high resolution experiments are needed, (2) essentially no clear spectrum with well defined peaks is expected in itinerant Ce and U compounds, and (3) Np and Pu is strictly regulated. Therefore, systematic research on magnetic excitations by neutron scattering experiments of localized compounds and rare earth iso-structural reference is useful. We describe the $$f$$ electron states of heavy electron compounds NpPd$$_5$$Al$$_2$$ and actinide and rare earth based iso-structural family.

Journal Articles

Mitigation of cavitation damage in J-PARC mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 28, p.081004_1 - 081004_6, 2020/02

The beam window of the mercury target vessel in J-PARC is severely damaged by the cavitation. The cavitation damage is a crucial factor to limit lifetime of the target because it increases with the beam power. Therefore, mitigating cavitation damage is an important issue to operate the target stably for long time at 1 MW. At J-PARC, to mitigate the cavitation damage: gas microbubbles are injected into mercury for suppressing pressure waves, and double-walled structure with a narrow channel of 2 mm in width to form high-speed mercury flow ($$sim$$4m/s) has been adopted. After operation, the beam window was cut to inspect the effect of the cavitation damage mitigation on inner wall. We optimized cutting conditions through the cold cutting tests, succeeding in cutting the target No.2 (without damage mitigation technologies) smoothly in 2017, and target No.8 with damage mitigation technologies. In the workshop, progress of cavitation damage observation for the target vessel will be presented.

Journal Articles

New design and fabrication technology applied in mercury target vessel #8 of J-PARC

Wakui, Takashi; Wakai, Eiichi; Kogawa, Hiroyuki; Naoe, Takashi; Hanano, Kohei; Haga, Katsuhiro; Takada, Hiroshi; Shimada, Tsubasa*; Kanomata, Kenichi*

JPS Conference Proceedings (Internet), 28, p.081002_1 - 081002_6, 2020/02

A mercury target vessel of J-PRAC is designed with a triple-walled structure consisting of the mercury vessel and a double-walled water shroud with internal and external vessels. During the beam operation at 500 kW in 2015, small water leakages from a water shroud of the mercury target vessel occurred twice. Design, fabrication and inspection processes were improved based on the lessons learned from the target failures. The total length of welding lines at the front of the mercury target vessel decreases drastically to approximately 55% by adopting monolithic structure cut out from a block of stainless steel by the wire-electrical discharge machining. Thorough testing of welds by radiographic testing and ultrasonic testing was conducted. The fabrication of the mercury target vessel #8 was finished on September 2017 and the beam operation using it started. Stable beam operation at 500 kW has been achieved and it could experience the maximum beam power of 1 MW during a beam test.

Journal Articles

Optimum temperature for HIP bonding invar alloy and stainless steel

Wakui, Takashi; Ishii, Hideaki*; Naoe, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Wakai, Eiichi; Takada, Hiroshi; Futakawa, Masatoshi

Materials Transactions, 60(6), p.1026 - 1033, 2019/06

 Times Cited Count:1 Percentile:13.55(Materials Science, Multidisciplinary)

The mercury target has large size as 1.3$$times$$1.3$$times$$2.5 m$$^{3}$$. In view of reducing the amount of wastes, we studied the structure so that the fore part could be separated. The flange is required to have high seal performance less than 1$$times$$10$$^{-6}$$ Pa m$$^{3}$$/s. Invar with low thermal expansion is a candidate. Due to its low stiffness, however, the flange may deform when it is fastened by bolts. Practically invar is reinforced with stainless steel where all interface between them has to be bonded completely with the HIP bonding. In this study, we made specimens at four temperatures and conducted tensile tests. The specimen bonded at 973 K had little diffusion layer, and so fractured at the interface. The tensile strength reduced with increasing the temperature, and the reduced amount was about 10% at 1473 K. The analyzed residual stresses near the interface increased by 50% at maximum. Then, we concluded that the optimum temperature was 1173 K.

Journal Articles

Ultrasonic inspection technique for weld part of mercury target vessel for spallation neutron source

Wakui, Takashi; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Takada, Hiroshi; Shintaku, Yohei*; Li, T.*; Kanomata, Kenichi*

Choompa Techno, 30(5), p.16 - 20, 2018/10

A mercury target vessel has been used for the spallation neutron source at J-PARC. It has a complicated multi-layered structure composed of a mercury target and a surrounding double-walled water shroud, which is assembled with thin plates (minimum thickness of 3 mm) by welding. Thus, welding inspection during the manufacturing process is important. We investigated the applicability of new ultrasonic inspections using specimens (thickness of 3 mm) with defects to improve the accuracy of welding inspection for the mercury target vessel. Immersion ultrasonic testing using a probe (frequency of 50 MHz) could detect a spherical defect with a diameter of 0.2 mm. The size was smaller than target value of 0.4 mm. The length of unwelded region estimated using the phased array ultrasonic testing corresponded with the actual length (0.8 - 1.5 mm).

Journal Articles

Effect of welding on gigacycle fatigue strength of austenitic stainless steels

Naoe, Takashi; Wakui, Takashi; Kogawa, Hiroyuki; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

Advanced Experimental Mechanics, 3, p.123 - 128, 2018/08

A mercury target vessel, composed of SUS316L, is used for the pulsed neutron source and is assembled via TIG welding. While in operation, the target vessel suffers ca. 10$$^9$$ loading cycles with a high strain rate of ca. 50 s$$^{-1}$$ because of the proton-beam-induced pressure waves in mercury. The gigacycle fatigue strength for solution annealed SUS316L stainless steels and its welded specimens were investigated through ultrasonic fatigue tests. The experimental results showed that an obvious fatigue limit was not observed at fewer than 10$$^9$$ cycles for the base metal. In the case of no weld defects observed via penetration tests, the fatigue strength of the removed-weld-bead specimen, in which the weld lines were arranged at the center of the specimen, appeared to be slightly higher than that of the base metal. By contrast, as-welded specimens with the weld bead intact showed apparent degradation of the fatigue strength owing to the stress concentration around the weld toe.

Journal Articles

Cavitation damage in double-walled mercury target vessel

Naoe, Takashi; Wakui, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Haga, Katsuhiro; Harada, Masahide; Takada, Hiroshi; Futakawa, Masatoshi

Journal of Nuclear Materials, 506, p.35 - 42, 2018/08

BB2016-1013.pdf:0.96MB

 Times Cited Count:3 Percentile:45.99(Materials Science, Multidisciplinary)

A mercury target vessel made of 316L SS is damaged due to the cavitation caused by the pressure waves in mercury. Cavitation damage reduces the structural integrity of the target front, called "beam window", being major factor to determine the lifetime of target vessel. Aiming at mitigating the cavitation damage by faster mercury flow in narrow channel, we employed a target vessel with a double-walled structure at the beam window along with a gas microbubbles injection. After operating the double-walled target vessel with a beam power of 300 to 500 kW, we cut out the beam window using an annular cutter to examine the damage inside it, and found that damages with maximum pit depth of approximately 25 $$mu$$m distributed in a belt on the specimen facing narrow channel. Furthermore, numerical simulation result showed that the distribution of negative pressure period from beam injection to 1 ms was correlated with the damage distribution in the narrow channel. It was suggested that the cavitation induced by relatively short negative pressure period contributed to the damage formation.

Journal Articles

Recent studies for structural integrity evaluation and defect inspection of J-PARC spallation neutron source target vessel

Wakui, Takashi; Wakai, Eiichi; Naoe, Takashi; Shintaku, Yohei*; Li, T.*; Murakami, Kazuya*; Kanomata, Kenichi*; Kogawa, Hiroyuki; Haga, Katsuhiro; Takada, Hiroshi; et al.

Journal of Nuclear Materials, 506, p.3 - 11, 2018/08

 Times Cited Count:1 Percentile:17.98(Materials Science, Multidisciplinary)

The mercury target vessel is designed as multi-walled structure with thin wall (min. 3 mm), and assembled by welding. In order to estimate the structural integrity of the vessel, it is important to measure the defects in welding accurately. For nondestructive tests of the welding, radiographic testing is applicable but it is difficult to detect for some defect shapes. Therefore it is effective to do ultrasonic testing together with it. Because ultrasonic methods prescribed in JIS inspect on the plate with more than 6 mm in thickness, these methods couldn't be applied as the inspection on the vessel with thin walls. In order to develop effective method, we carried out measurements using some testing method on samples with small defect whose size is specified. In the case of the latest phased array method, measured value agreed with actual size. It was found that this method was applicable to detect defects in the thin-walled structure for which accurate inspection was difficult so far.

Journal Articles

Technical investigation on small water leakage incident occurrence in mercury target of J-PARC

Haga, Katsuhiro; Kogawa, Hiroyuki; Wakui, Takashi; Naoe, Takashi; Takada, Hiroshi

Journal of Nuclear Science and Technology, 55(2), p.160 - 168, 2018/02

 Times Cited Count:4 Percentile:56.63(Nuclear Science & Technology)

The mercury target vessel used for the spallation neutron source in J-PARC has multi-walled structure made of stainless steel type 316L, which comprises a mercury vessel and a water shroud. In 2015, water leak incidents from the water shroud occurred while the mercury target was operated with a proton beam power of 500 kW. Several investigations were conducted to identify the cause of failure. The results of the visual inspections, mockup tests, and analytical evaluations suggested that the water leak was caused by the combination of two factors. One was the diffusion bonding failure due to the large thermal stress induced by welding of the bolt head, which fixes the mercury vessel and the water shroud, during the fabrication process. The other was the thermal fatigue failure of the seal weld due to the repetitive beam trip during the operating period. These target failures point to the importance of eliminating initial defects from welding lines and to secure the rigidity and reliability of welded structures. The next mercury target was fabricated with an improved design which adopted parts of monolithic structure machined by wire EDM to reduce welding lines, and intensified inspections to eliminate the initial defects. The operation with the improved target is planned to be started in October 2017.

Journal Articles

Experimental determination of the topological phase diagram in Cerium monopnictides

Kuroda, Kenta*; Ochi, Masayuki*; Suzuki, Hiroyuki*; Hirayama, Motoaki*; Nakayama, Mitsuhiro*; Noguchi, Ryo*; Bareille, C.*; Akebi, Shuntaro*; Kunisada, So*; Muro, Takayuki*; et al.

Physical Review Letters, 120(8), p.086402_1 - 086402_6, 2018/02

 Times Cited Count:24 Percentile:89.19(Physics, Multidisciplinary)

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

Journal Articles

Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources, 4; Measurement of pressure wave response and microbubble effect on mitigation in mercury target at J-PARC

Kogawa, Hiroyuki; Naoe, Takashi; Futakawa, Masatoshi; Haga, Katsuhiro; Wakui, Takashi; Harada, Masahide; Takada, Hiroshi

Journal of Nuclear Science and Technology, 54(7), p.733 - 741, 2017/07

 Times Cited Count:8 Percentile:75.2(Nuclear Science & Technology)

A mercury target system has been operated to produce neutron beams at the spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Pressure waves are generated in mercury by rapid heat generation at the time of high-intensity short-pulse proton beam injection. Not only they cause cyclic stress but also induce the cavitation damage on the target vessel made from type 316L stainless steel. Reduction of these pressure waves is very important issue to ensure enough lifetime of the target vessel. To solve the issue, we have been developing the technique to inject microbubbles into mercury. In this study, we installed a microbubble generator in the mercury target vessel, and investigate the effect of proton beam condition and the microbubbles on the pressure wave mitigation by measuring the displacement velocity of the target vessel with an in-situ diagnostic system. As a result, we observed that the peak displacement velocity of the target vessel decreased down to 1/3 and 2/3 for the injected gas fractions of 0.4% and 0.1%, respectively.

Journal Articles

In-situ structural integrity evaluation for high-power pulsed spallation neutron source by using a laser Doppler method

Wan, T.; Naoe, Takashi; Wakui, Takashi; Haga, Katsuhiro; Kogawa, Hiroyuki; Futakawa, Masatoshi

JAEA-Conf 2015-002, p.76 - 87, 2016/02

High power accelerator driven pulsed spallation neutron sources are being developed in the world. Mercury is used as a target material to produce neutrons via the spallation reaction induced by injected protons. At the moment of the proton injection, the mercury vessel with a double wall structure is impulsively excited by the interaction between mercury and solid wall. The vibrational signals were measured in noncontact and remotely by using a Laser Doppler Vibrometer (LDV) system to evaluate the structure integrity. The extreme damages were assumed as the first step, i.e., the inner structure was partly broken by erosion. The dependency of vibrational behaviors on the damage was systematically investigated through numerical simulations and experiments. A LDV was installed to monitor the dependency of an electro-Magnetic Impact Testing Machine (MIMTM) vibration on the damage size. Through the numerical simulation, it was found that the target vessel vibration depends on the damage size. A technique referred to a Wavelet Differential Analysis (WDA) has been developed to enhance the effect of damages on the impulsive vibration behavior. However, the vibration signals obtained from MIMTM contain considerable noise. In order to reduce the noise effect on the impulsive vibration behavior, the statistical methods referred to an Analysis of Variance (ANOVA) and an Analysis of Covariance (ANCOVA) was applied. Numerical simulation results that obtained from controlling the damage size, were firstly added to random noise with various levels manually, and then were analyzed by the statistic methods. Then, the field data that measured from the real mercury target was analyzed. The results represent that the combination of WDA and ANOVA/ANCOVA could effectively indicate the damage dependency.

200 (Records 1-20 displayed on this page)