Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsumoto, Yuji*; Watabe, Yuki*; Iesari, F.*; Osumi, Masakatsu*; Ota, Kyugo*; Haga, Yoshinori; Hatada, Keisuke*; Okajima, Toshihiko*
Metals, 15(4), p.436_1 - 436_13, 2025/04
Maeda, Mizuho*; Matsuda, Tatsuma*; Haga, Yoshinori; Shirasaki, Kenji*; Kimura, Noriaki*
Journal of the Physical Society of Japan, 94(2), p.024707_1 - 024707_6, 2025/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Valika, M.*; Haidamak, T.*; Cabala, A.*; Posp
il, J.*; Bastien, G.*; Sechovsk
, V.*; Prokle
ka, J.*; Yanagisawa, Tatsuya*; Opletal, P.; Sakai, Hironori; et al.
Physical Review Materials (Internet), 8(9), p.094415_1 - 094415_9, 2024/09
Times Cited Count:2 Percentile:0.00(Materials Science, Multidisciplinary)Takeuchi, Tetsuya*; Honda, Fuminori*; Aoki, Dai*; Haga, Yoshinori; Kida, Takanori*; Narumi, Yasuo*; Hagiwara, Masayuki*; Kindo, Koichi*; Karube, Kosuke*; Harima, Hisatomo*; et al.
Journal of the Physical Society of Japan, 93(4), p.044708_1 - 044708_10, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Tokiwa, Yoshifumi; Opletal, P.; Sakai, Hironori; Kambe, Shinsaku; Yamamoto, Etsuji; Kimata, Motoi*; Awaji, Satoshi*; Sasaki, Takahiko*; Aoki, Dai*; Haga, Yoshinori; et al.
Physical Review B, 109(14), p.L140502_1 - L140502_6, 2024/04
Times Cited Count:6 Percentile:86.08(Materials Science, Multidisciplinary)The normal-conducting state of the superconductor UTe is studied by entropy analysis for magnetic fields along the
-axis, obtained from magnetization using the relation
. We observe a strong increase in entropy with magnetic field due to metamagnetic fluctuations (spatially uniform,
). The field dependence is well described by the Hertz-Millis-Moriya theory for quantum criticality of itinerant metamagnetism. Notably, the lower bound of the quantum-critical region coincides well with the position of the minimum in the superconducting transition temperature
. Hence, our results suggest that
fluctuations reinforce the superconductivity.
Tabata, Chihiro; Kon, Fusako*; Ota, Kyugo*; Hibino, Ruo*; Matsumoto, Yuji*; Amitsuka, Hiroshi*; Nakao, Hironori*; Haga, Yoshinori; Kaneko, Koji
Physical Review B, 109(13), p.134403_1 - 134403_7, 2024/04
Times Cited Count:2 Percentile:40.97(Materials Science, Multidisciplinary)Suetsugu, Shota*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; 12 of others*
Science Advances (Internet), 10(6), p.eadk3772_1 - eadk3772_6, 2024/02
Times Cited Count:11 Percentile:95.98(Multidisciplinary Sciences)Yoshida, Shogo*; Haga, Yoshinori; Fujii, Takuto*; Nakai, Yusuke*; Mito, Takeshi*; 8 of others*
Journal of the Physical Society of Japan, 93(1), p.013702_1 - 013702_5, 2024/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Ota, Kyugo*; Matsumoto, Yuji*; Watabe, Yuki*; Kaneko, Koji; Tabata, Chihiro; Haga, Yoshinori
New Physics; Sae Mulli, 73(12), p.1170 - 1173, 2023/12
We have performed the neutron scattering study of antiferromagnet UPt
Al
with the honeycomb lattice to determine the magnetic structure. U
Pt
Al
exhibits two phase transitions at
= 9 K and
= 26 K. In phase I at
, the magnetic reflections described by a propagation vector
= (1/3, 0, 0) were observed. In phase II at
, magnetic reflections of
= (1/3, 0, 0) and
= (1/2, 0, 0) were observed and the magnetic reflection intensity of
= (1/3, 0, 0) is weak but finite. The hysteresis in the temperature dependent intensities is observed across the phase transition at
, suggesting that the transition at
is of first order.
Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; Kitagawa, Shunsaku*; Ishida, Kenji*; Aoki, Dai*; Knebel, G.*; et al.
Physical Review Letters, 131(22), p.226503_1 - 226503_7, 2023/12
Times Cited Count:11 Percentile:85.32(Physics, Multidisciplinary)Onuki, Yoshichika*; Karube, Kosuke*; Aoki, Dai*; Nakamura, Ai*; Homma, Yoshiya*; Matsuda, Tatsuma*; Haga, Yoshinori; Takeuchi, Tetsuya*
Journal of the Physical Society of Japan, 92(11), p.114703_1 - 114703_12, 2023/11
Times Cited Count:1 Percentile:23.32(Physics, Multidisciplinary)Sakai, Hironori; Haga, Yoshinori
Kotai Butsuri, 58(10), p.529 - 536, 2023/10
We have succeeded to grow high-quality UTe single crystals with excess uranium through molten salt flux method. We have also studied the superconducting phase diagram using the high-quality crystal applying the fields up to 25 T along the magnetic hard
axis.
Kawasaki, Ikuto; Takeuchi, Kazuharu*; Fujimori, Shinichi; Takeda, Yukiharu; Yamagami, Hiroshi; Yamamoto, Etsuji; Haga, Yoshinori
Physical Review B, 108(16), p.165127_1 - 165127_9, 2023/10
Times Cited Count:1 Percentile:13.37(Materials Science, Multidisciplinary)Tokiwa, Yoshifumi; Sakai, Hironori; Kambe, Shinsaku; Opletal, P.; Yamamoto, Etsuji; Kimata, Motoi*; Awaji, Satoshi*; Sasaki, Takahiko*; Yanase, Yoichi*; Haga, Yoshinori; et al.
Physical Review B, 108(14), p.144502_1 - 144502_5, 2023/10
Times Cited Count:7 Percentile:64.95(Materials Science, Multidisciplinary)The vortex dynamics in the spin-triplet superconductor, UTe, are studied by measuring the DC electrical resistivity with currents along the
-axis under magnetic fields along the
-axis. Surprisingly, we have discovered an island region of low critical current deep inside the superconducting (SC) state, well below the SC upper critical field, attributed to a weakening of vortex pinning. Notably, this region coincides with the recently proposed intermediate-field SC state. We discuss the possibility of nonsingular vortices in the intermediate state, where SC order parameter does not vanish entirely in the vortex cores due to the mixing of multiple SC components.
Kitazawa, Takafumi; Ikeda, Yoichi*; Sakakibara, Toshiro*; Matsuo, Akira*; Shimizu, Yusei*; Tokunaga, Yo; Haga, Yoshinori; Kindo, Koichi*; Nambu, Yusuke*; Ikeuchi, Kazuhiko*; et al.
Physical Review B, 108(8), p.085105_1 - 085105_7, 2023/08
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Takeda, Yukiharu; Pospil, J.*; Yamagami, Hiroshi; Yamamoto, Etsuji; Haga, Yoshinori
Physical Review B, 108(8), p.085129_1 - 085129_10, 2023/08
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Ota, Kyugo*; Watabe, Yuki*; Haga, Yoshinori; Iesari, F.*; Okajima, Toshihiko*; Matsumoto, Yuji*
Symmetry (Internet), 15(8), p.1488_1 - 1488_13, 2023/07
Times Cited Count:2 Percentile:25.10(Multidisciplinary Sciences)Ishihara, Kota*; Roppongi, Masaki*; Kobayashi, Masayuki*; Imamura, Kumpei*; Mizukami, Yuta*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; Hashimoto, Kenichiro*; et al.
Nature Communications (Internet), 14, p.2966_1 - 2966_7, 2023/05
Times Cited Count:32 Percentile:97.70(Multidisciplinary Sciences)The superconducting symmetry of the heavy fermion uranium-based superconductor UTe is investigated using low temperature penetration depth measurements. The anisotropic low-energy quasiparticle excitations indicates multiple superconducting components in a chiral complex form. The most consistent is a chiral non-unitary state.
Hirato, Misaki*; Yokoya, Akinari*; Baba, Yuji*; Mori, Seiji*; Fujii, Kentaro*; Wada, Shinichi*; Izumi, Yudai*; Haga, Yoshinori
Physical Chemistry Chemical Physics, 25(21), p.14836 - 14847, 2023/05
Times Cited Count:2 Percentile:28.18(Chemistry, Physical)Sakai, Hironori; Tokiwa, Yoshifumi; Opletal, P.; Kimata, Motoi*; Awaji, Satoshi*; Sasaki, Takahiko*; Aoki, Dai*; Kambe, Shinsaku; Tokunaga, Yo; Haga, Yoshinori
Physical Review Letters, 130(19), p.196002_1 - 196002_6, 2023/05
Times Cited Count:24 Percentile:96.14(Physics, Multidisciplinary)The superconducting (SC) phase diagram in uranium ditelluride is explored under magnetic fields () along the hard magnetic
-axis using a high-quality single crystal with
= 2.1 K. Simultaneous electrical resistivity and AC magnetic susceptibility measurements discern low- and high-field SC (LFSC and HFSC, respectively) phases with contrasting field-angular dependence. Crystal quality increases the upper critical field of the LFSC phase, but the
of
T, at which the HFSC phase appears, is always the same through the various crystals. A phase boundary signature is also observed inside the LFSC phase near
, indicating an intermediate SC phase characterized by small flux pinning forces.