Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 147

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanical properties of high manganese austenitic stainless steel JK2LB for ITER central solenoid jacket material

Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya*; Devred, A.*; Vostner, A.*

Physics Procedia, 67, p.1016 - 1021, 2015/07

 Times Cited Count:1 Percentile:44.56

Journal Articles

Establishment of production process of JK2LB jacket section for ITER CS

Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*

IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06

 Times Cited Count:13 Percentile:33.82(Engineering, Electrical & Electronic)

Journal Articles

Cryogenic structures of superconducting coils for fusion experimental reactor "ITER"

Nakajima, Hideo; Shimamoto, Susumu*; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu

Teion Kogaku, 48(10), p.508 - 516, 2013/10

JAEA is procuring both structural materials and structural design of Toroidal Field (TF) coil and Central Solenoid (CS) for ITER. Although 316LN is used in the most parts of the superconducting magnets system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by JAEA and Japanese steel companies, are used in the highest stress area of TF coil case and whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of "Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)" issued by the Japan Society of Mechanical Engineers (JSME). The design of structural materials, production technology and quality control are described in this paper.

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:41.33(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Benchmarking of mechanical test facilities related to ITER CICC steel jackets

Vostner, A.*; Pong, I.*; Bessette, D.*; Devred, A.*; Sgobba, S.*; Jung, A.*; Weiss, K.-P.*; Jewell, M. C.*; Liu, S.*; Yu, W.*; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.9500705_1 - 9500705_5, 2013/06

 Times Cited Count:11 Percentile:41.33(Engineering, Electrical & Electronic)

The ITER Cable-In-Conduit Conductor (CICC) used in the superconducting magnet system consists of a cable made of 300 to 1440 strands housed in a stainless steel tube (a.k.a. jacket or conduit). There are circular, square, as well as circle-in-square jackets, made of either a very low carbon AISI 316LN grade stainless steel or a high Mn austenitic stainless steel developed for ITER called JK2LB. Selected mechanical properties of the base material and weld joint were tested at room temperature and/or cryogenic temperatures ($$<$$ 7 K). The Domestic Agencies (DAs) reference laboratories and the ITER-IO appointed reference laboratories, CERN and Karlsruhe Institute of Technology (KIT) performed mechanical tests. This paper will compare the test results (e.g. elongation to failure) from different laboratories.

Journal Articles

ITER magnet systems; From qualification to full scale construction

Nakajima, Hideo; Hemmi, Tsutomu; Iguchi, Masahide; Nabara, Yoshihiro; Matsui, Kunihiro; Chida, Yutaka; Kajitani, Hideki; Takano, Katsutoshi; Isono, Takaaki; Koizumi, Norikiyo; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

The ITER organization and 6 Domestic Agencies (DA) have been implementing the construction of ITER superconducting magnet systems. Four DAs have already started full scale construction of Toroidal Field (TF) coil conductors. The qualification of the radial plate manufacture has been completed, and JA and EU are ready for full scale construction. JA has qualified full manufacturing processes of the winding pack with a 1/3 prototype and made 2 full scale mock-ups of the basic segments of TF coil structure to optimize and industrialize the manufacturing process. Preparation and qualification of the full scale construction of the TF coil winding is underway by EU. Procurement of the manufacturing equipment is near completion and qualification of manufacturing processes has already started. The constructions of other components of the ITER magnet systems are also going well towards the main goal of the first plasma in 2020.

Journal Articles

Effect of specimen shape on the elongation of 316LN jacket used in the ITER toroidal field coil

Hamada, Kazuya; Kawano, Katsumi; Saito, Toru; Iguchi, Masahide; Nakajima, Hideo; Teshima, Osamu*; Matsuda, Hidemitsu*

AIP Conference Proceedings 1435, p.55 - 62, 2012/06

 Times Cited Count:3 Percentile:20.75

The TF coil conductor was composed of 900 Nb$$_{3}$$Sn superconducting strands and 522 Cu strands protected by circular sheath tube (jacket) with the outer diameter of 43.7 mm. The jacket section is a seamless tube made of modified 316LN. JAEA tested different types of tensile specimen (Japanese Industrial Standards (JIS) type and ASTM type) cut from jacket. ASTM type specimen has longer and wider reduced section than those of JIS type specimen. Elongation of as received condition is not dependent on specimen shape. But after cold work and aging, the elongation is deteriorated due to a sensitization and scattering of elongation is larger than that of as received condition. Fracture mode of aged jacket is "cup and cone fracture", which have a mixture of inter granular at center area and trans-granular factures in circumference area. It is considered that initiation of fracture is more sensitive on test specimen shape with low ductility.

Journal Articles

Method to evaluate CIC conductor performance by voltage taps using CSMC facility

Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Koizumi, Norikiyo; Nakajima, Hideo

IEEE Transactions on Applied Superconductivity, 22(3), p.4803804_1 - 4803804_4, 2012/06

 Times Cited Count:0 Percentile:100(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06

 Times Cited Count:7 Percentile:53.04(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of Nb$$_{3}$$Sn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.

Journal Articles

Preparation for the ITER central solenoid conductor manufacturing

Hamada, Kazuya; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Kawano, Katsumi; Saito, Toru; Oshikiri, Masayuki; Uno, Yasuhiro; Koizumi, Norikiyo; Nakajima, Hideo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203404_1 - 4203404_4, 2012/06

 Times Cited Count:14 Percentile:34.53(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has the responsibility for procurement of all of the ITER central solenoid (CS) conductor lengths. The CS conductor is composed of 576 Nb$$_{3}$$ Sn superconducting strands and 288 Cu strands assembled together into a multistage cable and protected by a circle-in-square sheath tube (jacket) with the outer dimension of 49 mm. In preparation for CS conductor production, the following R&D activities have been performed; (1) Mechanical tests at 4 K have been performed for jacket candidate materials such as 316LN and JK2LB, (2) Welding test for filler selection, (3) Measurement of coefficient of sliding friction using a 100-m long dummy cable, (4) Deformation characteristics of the conductor cross section after compaction and spooling. As a result of these R&D, the CS conductor jacket manufacturing technologies have been confirmed to start the procurement of the CS conductor.

Journal Articles

Test results and investigation of Tcs degradation in Japanese ITER CS conductor samples

Hemmi, Tsutomu; Nunoya, Yoshihiko; Nabara, Yoshihiro; Yoshikawa, Masatoshi*; Matsui, Kunihiro; Kajitani, Hideki; Hamada, Kazuya; Isono, Takaaki; Takahashi, Yoshikazu; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4803305_1 - 4803305_5, 2012/06

 Times Cited Count:39 Percentile:11.76(Engineering, Electrical & Electronic)

To characterize the performance of the CS conductor, a CS conductor sample was tested in the SULTAN facility at CRPP. As a result of the cyclic test up to 1000 cycles, measured Tcs was in good agreement with the expected Tcs, which is calculated by the characteristics of the Nb$$_{3}$$Sn strands and the designed strain. However, continuous degradation of Tcs was observed after 1000 cycles. The degradation of Tcs was around 0.6 K from 1000 cycles to 6000 cycles. On the other hand, the degradation of Tcs by cyclic operation is nearly 0.1 K from 1000 cycles to 10,000 cycles in the CS Insert test at JAEA in 2000. To investigate the causes for the degradation of Tcs, the following items are performed; (1) strain measurement by neutron diffraction, (2) strain measurement by sample cuttings, (3) strand position observation, (4) visual inspection on strands, (5) filament breakage observation, (6) modeling and calculation of the degradation. Detailed results will be presented and discussed.

Journal Articles

Examination of Japanese mass-produced Nb$$_3$$Sn conductors for ITER toroidal field coils

Nabara, Yoshihiro; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Takahashi, Yoshikazu; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Ebisawa, Noboru; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4804804_1 - 4804804_4, 2012/06

 Times Cited Count:14 Percentile:34.53(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Addressing the technical challenges for the construction of the ITER Central Solenoid

Libeyre, P.*; Bessette, D.*; Jewell, M.*; Jong, C.*; Lyraud, C.*; Rodriguez-Mateos, M.*; Hamada, Kazuya; Reiersen, W.*; Martovetsky, N.*; Rey, C.*; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4201104_1 - 4201104_4, 2012/06

 Times Cited Count:6 Percentile:57.06(Engineering, Electrical & Electronic)

The Central Solenoid (CS) of the ITER magnet system will play a major role in tokamak operation, providing not only the major part of the inductive flux variation required to drive the plasma but also contributing to the shaping of the field lines and to vertical stability control. To meet these requirements, the design has been optimised by splitting the CS into six independently powered coils enclosed inside an external structure which provides vertical precompression thus preventing separation of the coils and, additionally, acting as a support to net resulting loads. To ensure that the CS design meets the ITER criteria, several analyses are performed along with a series of R&D trials to qualify the technologies to be used for the manufacture of the conductor, the coils and the structure.

Journal Articles

Pressure drop characteristic of the ITER cable-in-conduit conductor

Hamada, Kazuya; Kawano, Katsumi; Ebisawa, Noboru; Nakajima, Hideo; Yano, Yoshitaka*; Yamaguchi, Takanori*

Proceedings of 24th International Cryogenic Engineering Conference (ICEC 24) and International Cryogenic Materials Conference 2012 (ICMC 2012) (CD-ROM), p.559 - 562, 2012/05

The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors and 100% of Central Solenoid Conductor as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is composed of 900 Nb$$_{3}$$Sn superconducting strands and 522 Cu strands protected by a circular sheath tube (jacket) with an outer diameter of 43.7 mm. The TF conductor has a central spiral cooling tube and a coolant flows into the cable space and the central channel in parallel. JAEA has measured a pressure drop characteristic of more than 20 TF conductors having different length using nitrogen gas at room temperature as a part of acceptance test. The measurement results are normalized to friction factor as a function of Reynolds number to check the difference of each other. The results show the normalized pressure drop characteristic is same among conductors. This is one of evidences that TF conductor is manufactured uniformly.

Journal Articles

Mass production and quality control of Nb$$_3$$Sn superconducting strands for ITER toroidal field coils

Nabara, Yoshihiro; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Uno, Yasuhiro; Takahashi, Yoshikazu; Nakajima, Hideo; Tsuzuku, Seiji*; Tagawa, Kohei*; Miyashita, Katsumi*; et al.

Teion Kogaku, 47(3), p.140 - 146, 2012/03

no abstracts in English

Journal Articles

Development of manufacturing technologies for ITER Toroidal Field coil conductors

Hamada, Kazuya; Takahashi, Yoshikazu; Nabara, Yoshihiro; Kawano, Katsumi; Ebisawa, Noboru; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Saito, Toru*; Nakajima, Hideo; Matsuda, Hidemitsu*; et al.

Teion Kogaku, 47(3), p.153 - 159, 2012/03

The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA has constructed newly conductor manufacturing facility. Prior to starting conductor, JAEA manufactured a 760-m long Cu dummy conductor as process qualification of dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.

Journal Articles

Technology development and mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

Nuclear Fusion, 51(11), p.113015_1 - 113015_11, 2011/11

 Times Cited Count:10 Percentile:51.68(Physics, Fluids & Plasmas)

Japan Atomic Energy Agency is procuring the Nb$$_{3}$$Sn superconductors for Toroidal Field (TF) Coils under the ITER project. Because manufacturing amount of Nb$$_{3}$$Sn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. This paper summarizes the technical developments leading to the first successful mass production of ITER TF conductors.

Journal Articles

First qualification of ITER toroidal field coil conductor jacketing

Hamada, Kazuya; Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; et al.

Fusion Engineering and Design, 86(6-8), p.1506 - 1510, 2011/10

 Times Cited Count:9 Percentile:34.26(Nuclear Science & Technology)

Japan Atomic Energy Agency has a responsibility for procurement of the ITER toroidal field coil conductors as Japanese Domestic Agency (JADA) of the ITER project. The TF conductor is a circular shaped cable-in-conduit conductor, which is composed of cable and stainless steel conduit (jacket). The outer diameter and wall thickness of jacket are 43.7mm and 2mm, respectively. The cable consists of 900 Nb$$_{3}$$Sn superconducting strands and 522 Cu strands. The length of TF conductor is 780m in maximum. Preparation of conductor fabrication was completed in December 2009. And then, to demonstrate a conductor manufacturing procedure, JADA fabricated 780m-long Cu dummy conductor as a process qualification. Finally, the 780m-long Cu dummy conductor has been successfully completed, ahead of other domestic agencies that are in charge of TF conductor procurement. Since all of manufacturing processes have been qualified, JADA started to fabricate superconducting conductors for TF coils.

Journal Articles

Technology development for the manufacture of Nb$$_{3}$$Sn conductors for ITER Toroidal Field coils

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Japan Atomic Energy Agency is procuring the Nb$$_{3}$$Sn superconductors for Toroidal Field (TF) coils under the ITER project. Because manufacturing amount of Nb$$_{3}$$Sn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. Cu dummy conductor with full length (760 m) has been fabricated successfully and all jacketing technology was confirmed through this fabrication. The fabrication of the Nb$$_{3}$$Sn conductor for TF coils will start in March 2010.

Journal Articles

Procurement of Nb$$_3$$Sn superconducting conductors in ITER

Nabara, Yoshihiro; Isono, Takaaki; Nunoya, Yoshihiko; Koizumi, Norikiyo; Hamada, Kazuya; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Uno, Yasuhiro*; Seki, Shuichi*; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.270 - 275, 2010/08

147 (Records 1-20 displayed on this page)