Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fusion reaction $$^{48}$$Ca+$$^{249}$$Bk leading to formation of the element Ts (Z=117)

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 99(5), p.054306_1 - 054306_16, 2019/05

AA2019-0039.pdf:5.03MB

 Times Cited Count:10 Percentile:88.51(Physics, Nuclear)

We have performed an experiment to synthesize the element 117 (Ts) with the $$^{48}$$Ca+$$^{249}$$Bk fusion reaction. Four $$alpha$$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $$alpha$$ decay of $$^{294}$$Ts. The other two were short decay chains which are consistent with the one originating from the $$alpha$$ decay of $$^{293}$$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

Journal Articles

Review of even element super-heavy nuclei and search for element 120

Hofmann, S.*; Heinz, S.*; Mann, R.*; Maurer, J.*; M$"u$nzenberg, G.*; Antalic, S.*; Barth, W.*; Burkhard, K. G.*; Dahl, L.*; Eberhardt, K.*; et al.

European Physical Journal A, 52(6), p.180_1 - 180_34, 2016/06

 Times Cited Count:110 Percentile:92.05(Physics, Nuclear)

Journal Articles

Remarks on the fission barriers of super-heavy nuclei

Hofmann, S.*; Heinz, S.*; Mann, R.*; Maurer, J.*; M$"u$nzenberg, G.*; Antalic, S.*; Barth, W.*; Dahl, L.*; Eberhardt, K.*; Grzywacz, R.*; et al.

European Physical Journal A, 52(4), p.116_1 - 116_12, 2016/04

 Times Cited Count:22 Percentile:88.15(Physics, Nuclear)

Journal Articles

$$^{48}$$Ca + $$^{249}$$Bk fusion reaction leading to element Z = 117; Long-lived $$alpha$$-decaying $$^{270}$$Db and discovery of $$^{266}$$Lr

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review Letters, 112(17), p.172501_1 - 172501_5, 2014/05

 Times Cited Count:175 Percentile:98.72(Physics, Multidisciplinary)

The superheavy element with atomic number 117 was produced in the $$^{48}$$Ca + $$^{249}$$Bk fusion reaction using the gas-filled recoil separator TASCA at GSI in Germany. This result verified the previous result of the discovery of new element 117 reported by Flerov Laboratory of Nuclear Reactions in Russia, which makes certain the synthesis and discovery of element 117 in human history. On the other hand, the last nucleus in the $$alpha$$ decay chain from the element 117 was assigned to be the unknown nucleus $$^{266}$$Lr instead of the previously reported $$^{270}$$Db, and $$^{270}$$Db was found to be the $$alpha$$-decaying nucleus with very long half-life.

Journal Articles

Performance evaluation on force control for ITER blanket installation

Aburadani, Atsushi; Takeda, Nobukazu; Shigematsu, Soichiro; Murakami, Shin; Tanigawa, Hisashi; Kakudate, Satoshi; Nakahira, Masataka*; Hamilton, D.*; Tesini, A.*

Fusion Engineering and Design, 88(9-10), p.1978 - 1981, 2013/10

 Times Cited Count:2 Percentile:21.27(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Multi-intruder structures in $$^{34}$$P

Bender, P. C.*; Tabor, S. L.*; Tripathi, V.*; Hoffman, C. R.*; Hamilton, L.*; Volya, A.*; Clark, R. M.*; Fallon, P.*; Macchiavelli, A. O.*; Paschalis, S.*; et al.

Physical Review C, 85(4), p.044305_1 - 044305_10, 2012/04

 Times Cited Count:12 Percentile:60.36(Physics, Nuclear)

The available experimental information on $$^{34}$$P has been greatly increased through the analysis of $$gamma$$ decays in coincidence with protons from the interaction of an $$^{18}$$O beam at 24 MeV with an $$^{18}$$O target. Light charged particles from the reaction were detected with Microball, and multiple $$gamma$$ ray coincidences with Gammasphere. Many newly observed $$gamma$$ transitions have been identified and placed in the level scheme. Additionally, for most states, spins have been assigned based on measured $$gamma$$ ray angular distributions while parities were inferred from lifetimes determined through Doppler-broadened line-shape analysis. Most of the states observed have been interpreted in terms of shell-model calculations using the WBP-a and SDPF-NR interactions having one particle in the 0$$f$$$$_{7/2}$$ or 1$$p$$$$_{3/2}$$ orbital. The two calculations agree almost equally well with the data resulting in root-mean-square differences of about 200 keV. However, two of a few high-lying states may be associated with stretched $$pi$$$$f$$$$_{7/2}$$ $$otimes$$ $$nu$$$$f$$$$_{7/2}$$ states, but the calculations over-predict their energies by 2-3 MeV. Furthermore, a newly observed long-lived 7919-keV state is established for which no explanation is available at present.

6 (Records 1-6 displayed on this page)
  • 1