Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ramadhan, R. S.*; Glaser, D.*; Soyama, Hitoshi*; Kockelmann, W.*; Shinohara, Takenao; Pirling, T.*; Fitzpatrick, M. E.*; Tremsin, A. S.*
Acta Materialia, 239, p.118259_1 - 118259_12, 2022/10
Times Cited Count:1 Percentile:44.11(Materials Science, Multidisciplinary)Zhang, J.*; Chen, M.*; Chen, J.*; Yamamoto, Kei; Wang, H.*; Hamdi, M.*; Sun, Y.*; Wagner, K.*; He, W.*; Zhang, Y.*; et al.
Nature Communications (Internet), 12, p.7258_1 - 7258_8, 2021/12
Times Cited Count:8 Percentile:72.26(Multidisciplinary Sciences)Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:1 Percentile:14(Astronomy & Astrophysics)Yao, Y.*; Cai, R.*; Yang, S.-H.*; Xing, W.*; Ma, Y.*; Mori, Michiyasu; Ji, Y.*; Maekawa, Sadamichi; Xie, X.-C.*; Han, W.*
Physical Review B, 104(10), p.104414_1 - 104414_6, 2021/09
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Soler, J. M.*; Meng, S.*; Moreno, L.*; Neretnieks, I.*; Liu, L.*; Kekl
inen, P.*; Hokr, M.*;
ha, J.*; Vete
n
k, A.*; Reimitz, D.*; et al.
SKB TR-20-17, 71 Pages, 2021/07
Task 9B of the SKB Task Force on Modelling of Groundwater Flow and Transport of Solutes in fractured rock focused on the modelling of experimental results from the LTDE-SD in situ tracer test performed at the sp
Hard Rock Laboratory in Sweden. Ten different modelling teams provided results for this exercise, using different concepts and codes. Three main types of modelling approaches were used: (1) analytical solutions to the transport-retention equations, (2) continuum-porous-medium numerical models, and (3) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains and microfracture distributions). The modelling by the different teams allowed the comparison of many different model concepts, especially in terms of potential zonations of rock properties (porosity, diffusion, sorption), such as the presence of a disturbed zone at the rock and fracture surface, the potential effects of micro- and cm-scale fractures.
Tanaka, Junki*; Yang, Z.*; Typel, S.*; Adachi, Satoshi*; Bai, S.*; Van Beek, P.*; Beaumel, D.*; Fujikawa, Yuki*; Han, J.*; Heil, S.*; et al.
Science, 371(6526), p.260 - 264, 2021/01
Times Cited Count:25 Percentile:98.55(Multidisciplinary Sciences)By employing quasi-free -cluster-knockout reactions, we obtained direct experimental evidence for the formation of
clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between
-cluster formation and the neutron skin.
Oyanagi, Koichi*; Takahashi, Saburo*; Cornelissen, L. J.*; Shan, J.*; Daimon, Shunsuke*; Kikkawa, Takashi*; Bauer, G. E. W.*; Van Wees, B. J.*; Saito, Eiji
Nature Communications (Internet), 10, p.4740_1 - 4740_6, 2019/10
Times Cited Count:32 Percentile:89.94(Multidisciplinary Sciences)Yang, P.-J.*; Li, Q.-J.*; Tsuru, Tomohito; Ogata, Shigenobu*; Zhang, J.-W.*; Sheng, H.-W.*; Shan, Z.-W.*; Sha, G.*; Han, W.-Z.*; Li, J.*; et al.
Acta Materialia, 168, p.331 - 342, 2019/04
Times Cited Count:41 Percentile:94.4(Materials Science, Multidisciplinary)Body-centred-cubic metallic materials, such as niobium (Nb) and other refractory metals, are prone to embrittlement due to low levels of oxygen solutes. The mechanisms responsible for the oxygen-induced rampant hardening and damage are unclear. Here we illustrate that screw dislocations moving through a random repulsive force field imposed by impurity oxygen interstitials readily form cross-kinks and emit excess vacancies in Nb. The vacancies bind strongly with oxygen and screw dislocation in a three-body fashion, rendering dislocation motion difficult and hence pronounced dislocation storage and hardening. This leads to unusually high strain hardening rates and fast breeding of nano-cavities that underlie damage and failure.
Tsekhanovich, I.*; Andreyev, A. N.; Nishio, Katsuhisa; Denis-Petit, D.*; Hirose, Kentaro; Makii, Hiroyuki; Matheson, Z.*; Morimoto, Koji*; Morita, Kosuke*; Nazarewicz, W.*; et al.
Physics Letters B, 790, p.583 - 588, 2019/03
Times Cited Count:28 Percentile:95.53(Astronomy & Astrophysics)Bandodkar, A. J.*; Gutruf, P.*; Choi, J.*; Lee, K.-H.*; Sekine, Yurina; Reeder, J. T.*; Jeang, W. J.*; Aranyosi, A. J.*; Lee, S. P.*; Model, J. B.*; et al.
Science Advances (Internet), 5(1), p.eaav3294_1 - eaav3294_15, 2019/01
Times Cited Count:360 Percentile:99.89(Multidisciplinary Sciences)Interest in advanced wearable technologies increasingly extends beyond systems for biophysical measurements to those that enable continuous, non-invasive monitoring of biochemical markers in biofluids. Here, we introduce battery-free, wireless microelectronic platforms that perform sensing via schemes inspired by the operation of biofuel cells. Combining these systems in a magnetically releasable manner with chrono-sampling microfluidic networks that incorporate assays based on colorimetric sensing yields thin, flexible, lightweight, skin-interfaced technologies with broad functionality in sweat analysis. A demonstration device allows simultaneous monitoring of sweat rate/loss, along with quantitative measurements of pH and of lactate, glucose and chloride concentrations using biofuel cell and colorimetric approaches.
Finsterle, S.*; Lanyon, B.*; kesson, M.*; Baxter, S.*; Bergstr
m, M.*; Bockg
rd, N.*; Dershowitz, W.*; Dessirier, B.*; Frampton, A.*; Fransson,
.*; et al.
Geological Society, London, Special Publications, No.482, p.261 - 283, 2019/00
Times Cited Count:8 Percentile:73.21Nuclear waste disposal in geological formations relies on a multi-barrier concept that includes engineered components which in many cases includes a bentonite buffer surrounding waste packages and the host rock. An SKB's (Swedish Nuclear Fuel and Waste Management Co.) Modelling Task Force project facilitated to improve the overall understanding of rock - bentonite interactions, as 11 teams used different conceptualisations and modelling tools to analyse the in-situ experiment at the ps
Hard Rock Laboratory. The exercise helped identify conceptual uncertainties that led to different assessments of the relative importance of the engineered and natural barrier subsystems and of aspects that need to be better understood to arrive at reliable predictions of bentonite wetting.
Phan, L. H. S.*; Ohara, Yohei*; Kawata, Ryo*; Liu, X.*; Liu, W.*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Tagami, Hirotaka
Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10
Self-leveling behavior of core fuel debris beds is one of the key phenomena for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The SIMMER code has been developed for CDA analysis of SFRs, and the code has been successfully applied to numerical simulations for key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, in SIMMER's fluid-dynamics model, it is always difficult to represent the strong interactions between solid particles as well as the discrete particle characteristics. To solve this problem, a new method has been developed by combining the multi-fluid model of the SIMMER code with the discrete element method (DEM) for the solid phase to reasonably simulate the particle behaviors as well as the fluid-particle interactions in multi-phase flows. In this study, in order to validate the multi-fluid model of the SIMMER code coupled with DEM, numerical simulations were performed on a series of self-leveling experiments using a gas injection method in cylindrical particle beds. The effects of friction coefficient on the simulation results were investigated by sensitivity analysis. Though more extensive validations are needed, the reasonable agreement between simulation results and corresponding experimental data preliminarily demonstrates the potential ability of the present method in simulating the self-leveling behaviors of debris bed. It is expected that the SIMMER code coupled with DEM is a prospective computational tool for analysis of safety issues related to solid particle debris bed in SFRs.
Tang, C.*; Song, Q.*; Chang, C.-Z.*; Xu, Y.*; Onuma, Yuichi; Matsuo, Mamoru*; Liu, Y.*; Yuan, W.*; Yao, Y.*; Moodera, J. S.*; et al.
Science Advances (Internet), 4(6), p.eaas8660_1 - eaas8660_6, 2018/06
Times Cited Count:27 Percentile:84.99(Multidisciplinary Sciences)Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Lugaro, M.*; Karakas, A. I.*; Makii, Hiroyuki; Mohr, P.*; Su, J.*; Li, Y. J.*; et al.
Astrophysical Journal, 848(2), p.98_1 - 98_8, 2017/10
Times Cited Count:5 Percentile:23.5(Astronomy & Astrophysics)Furuta, Takuya; Sato, Tatsuhiko; Han, M. C.*; Yeom, Y. S.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*
Physics in Medicine & Biology, 62(12), p.4798 - 4810, 2017/06
Times Cited Count:10 Percentile:51.39(Engineering, Biomedical)A new function to treat tetrahedral-mesh geometry, a type of polygon-mesh geometry, was implemented in the Particle and Heavy Ion Transport code Systems (PHITS). Tetrahedral-mesh is suitable to describe complex geometry including curving shapes. In addition, construction of three-dimensional geometry using CAD software becomes possible with file format conversion. We have introduced a function to create decomposition maps of tetrahedral-mesh objects at the initial process so that the computational time for transport process can be reduced. Owing to this function, transport calculation in tetrahedral-mesh geometry can be as fast as that for the geometry in voxel-mesh with the same number of meshes. Due to adaptability of tetrahedrons in size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with much fewer number of meshes compared with the voxels. For dosimetric calculation using computational human phantom, significant acceleration of the computational speed, about 4 times, was confirmed by adopting the tetrahedral mesh instead of the voxel.
Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Makii, Hiroyuki; Su, J.*; Li, Y. J.*; Nishinaka, Ichiro; Hirose, Kentaro; Han, Y. L.*; et al.
Physical Review C, 94(1), p.015804_1 - 015804_5, 2016/07
Times Cited Count:6 Percentile:46.63(Physics, Nuclear)Cooper, W. A.*; Brunetti, D.*; Faustin, J. M.*; Graves, J. P.*; Pfefferl, D.*; Raghunathan, M.*; Sauter, O.*; Tran, T. M.*; Chapman, I. T.*; Ham, C. J.*; et al.
Nuclear Fusion, 55(6), p.063032_1 - 063032_8, 2015/05
Times Cited Count:1 Percentile:4.95(Physics, Fluids & Plasmas)An approximate model for a single fluid 3D MHD equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions. Fast particle confinement is investigated with the VENUS code. In the presence of toroidal flow, the drift orbit equations depend on the electrostatic potential associated with the rotation and quasineutrality at lowest order in Larmor radius. When the equilibrium has 3D deformations, geometrical terms appear from the evaluation of Ohm's Law that considerably complicates the description of fast particle confinement.
Sanetullaev, A.*; Tsang, M. B.*; Lynch, W. G.*; Lee, J.*; Bazin, D.*; Chan, K. P.*; Coupland, D.*; Hanzl, V.*; Hanzlova, D.*; Kilburn, M.*; et al.
Physics Letters B, 736, p.137 - 141, 2014/09
Times Cited Count:12 Percentile:64.35(Astronomy & Astrophysics)no abstracts in English
Cooper, W. A.*; Hirshman, S. P.*; Chapman, I. T.*; Brunetti, D.*; Faustin, J. M.*; Graves, J. P.*; Pfefferl, D.*; Raghunathan, M.*; Sauter, O.*; Tran, T. M.*; et al.
Plasma Physics and Controlled Fusion, 56(9), p.094004_1 - 094004_8, 2014/09
Times Cited Count:4 Percentile:21.56(Physics, Fluids & Plasmas)An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment.
Deng, Z.*; Zhao, K.*; Gu, B.; Han, W.*; Zhu, J. L.*; Wang, X. C.*; Li, X.*; Liu, Q. Q.*; Yu, R. C.*; Goko, Tatsuo*; et al.
Physical Review B, 88(8), p.081203_1 - 081203_5, 2013/08
Times Cited Count:70 Percentile:92.19(Materials Science, Multidisciplinary)