Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hata, Kuniki; Hanawa, Satoshi; Chimi, Yasuhiro; Uchida, Shunsuke
Journal of Nuclear Science and Technology, 61(4), p.448 - 458, 2024/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
Hata, Kuniki; Hanawa, Satoshi; Chimi, Yasuhiro; Uchida, Shunsuke; Lister, D. H.*
Journal of Nuclear Science and Technology, 60(8), p.867 - 880, 2023/08
Times Cited Count:2 Percentile:35.75(Nuclear Science & Technology)One of the major subjects for evaluating the corrosive conditions in the PWR primary coolant was to determine the optimal hydrogen concentration for mitigating PWSCC without any adverse effects on major structural materials. As suitable procedures for evaluating the corrosive conditions in PWR primary coolant, a couple of procedures, i.e., water radiolysis and ECP analyses, were proposed. The previous article showed the radiolysis calculation in the PWR primary coolant, which was followed by an ECP study here. The ECP analysis, a couple of a mixed potential model and an oxide layer growth model, was developed originally for BWR conditions, which was extended to PWR conditions with adding Li (Na) and H effects on the anodic polarization curves. As a result of comparison of the calculated results with INCA in-pile-loop experiment data as well as other experimental data, it was confirmed that the ECPs calculated with the coupled analyses agreed with the measured within 100mV discrepancies.
Hata, Kuniki; Uchida, Shunsuke; Hanawa, Satoshi; Chimi, Yasuhiro; Sato, Tomonori
Proceedings of 21st International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors (Internet), 14 Pages, 2023/08
Shimodaira, Masaki; Tobita, Toru; Takamizawa, Hisashi; Katsuyama, Jinya; Hanawa, Satoshi
Journal of Pressure Vessel Technology, 144(1), p.011304_1 - 011304_7, 2022/02
Times Cited Count:1 Percentile:11.11(Engineering, Mechanical)In the structural integrity assessment of a reactor pressure vessel (RPV), the fracture toughness (K) should be higher than the stress intensity factor at the crack tip of an under-clad crack (UCC), which is prescribed in JEAC4206-2016. However, differences in crack depth and existence of cladding between the postulated crack and fracture toughness test specimens would be affected to the plastic constraint state and K evaluation. In this study, we performed fracture toughness tests and finite element analyses (FEAs) to investigate the effect of cladding on K evaluation. FEA showed that the cladding decreased the plastic constraint in the UCC rather than the surface crack. Moreover, it was also found that the apparent K for the UCC was higher than that for the surface crack from tests and the local approach.
Hata, Kuniki; Uchida, Shunsuke; Hanawa, Satoshi; Chimi, Yasuhiro
Proceedings of International Symposium on Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability (Fontevraud 10) (Internet), 11 Pages, 2022/00
Shimodaira, Masaki; Tobita, Toru; Takamizawa, Hisashi; Katsuyama, Jinya; Hanawa, Satoshi
Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 7 Pages, 2020/08
In JEAC 4206 which prescribes the methodology for assessing the structural integrity of reactor pressure vessels (RPVs), an under-clad crack (UCC) at the inner surface of RPV is postulated, and it is required that the fracture toughness of RPV steels is higher than stress intensity factor for at the crack tip during the pressurized thermal shock event. In the present study, to investigate the effect of cladding on the fracture toughness, we performed three-point bending fracture toughness tests and finite element analyses (FEAs) for an RPV steel containing an UCC or a surface crack, and the constraint effect for UCC was also discussed. As the result, we found that the fracture toughness for UCC was considerably higher than that for surface crack. On the other hand, the FEAs showed that the cladding decreased the constraint effect for UCC.
Ha, Yoosung; Takamizawa, Hisashi; Katsuyama, Jinya; Hanawa, Satoshi; Nishiyama, Yutaka
Nuclear Instruments and Methods in Physics Research B, 461, p.276 - 282, 2019/12
Times Cited Count:4 Percentile:37.18(Instruments & Instrumentation)Ha, Yoosung; Shimodaira, Masaki; Tobita, Toru; Hanawa, Satoshi; Yamasaki, Shota*; Uno, Sadanori*
2018-Nendo Ryoshi Kagaku Gijutsu Kenkyu Kaihatsu Kiko Shisetu Kyoyo Jisshi Hokokusho (Internet), 3 Pages, 2019/09
no abstracts in English
Hanawa, Satoshi; Hata, Kuniki; Chimi, Yasuhiro; Kasahara, Shigeki
Proceedings of 21st International Conference on Water Chemistry in Nuclear Reactor Systems (Internet), 12 Pages, 2019/09
Kasahara, Shigeki; Chimi, Yasuhiro; Hata, Kuniki; Hanawa, Satoshi
Zairyo To Kankyo, 68(9), p.240 - 247, 2019/09
In order to study environment assisted cracking mechanism of stainless steel under BWR primary coolant condition, effects of applied load on oxidation in the vicinity of crack tips of CT specimens were evaluated. Loaded CT specimens were immersed in an aqueous condition at 290C as a simulated BWR coolant condition, and microstructural observation on oxide near the tips of pre-cracks was carried out. Oxide inner layers, which consisted of fine grain magnetite containing Fe and Cr were formed, and oxide outer layers consisting of large grains of FeO were observed to cover the inner layers. FEM analysis of stress and strain in the loaded CT specimen suggests that both of dislocations due to localized plastic deformation and elastic strain could play important roles to accelerate inner oxide formation in the vicinity of the crack tip of the specimens.
Uchida, Shunsuke; Chimi, Yasuhiro; Kasahara, Shigeki; Hanawa, Satoshi; Okada, Hidetoshi*; Naito, Masanori*; Kojima, Masayoshi*; Kikura, Hiroshige*; Lister, D. H.*
Nuclear Engineering and Design, 341, p.112 - 123, 2019/01
Times Cited Count:7 Percentile:56.42(Nuclear Science & Technology)Improvement of plant reliability based on reliability-centered-maintenance (RCM) is going to be undertaken in NPPs. RCM is supported by risk-based maintenance (RBM). The combination of prediction and inspection is one of the key issues to promote RBM. Early prediction of IGSCC occurrence and its propagation should be confirmed throughout the entire plant systems which should be accomplished by inspections at the target locations followed by timely application of suitable countermeasures. From the inspections, accumulated data will be applied to confirm the accuracy of the code, to tune some uncertainties of the key data for prediction, and then, to increase their accuracy. The synergetic effects of prediction and inspection on application of effective and suitable countermeasures are expected. In the paper, the procedures for the combination of prediction and inspection are introduced.
Chimi, Yasuhiro; Sato, Kenji*; Kasahara, Shigeki; Umehara, Ryuji*; Hanawa, Satoshi
Proceedings of Contribution of Materials Investigations and Operating Experience to Light Water NPPs' Safety, Performance and Reliability (FONTEVRAUD-9) (Internet), 10 Pages, 2018/09
To investigate the influence of Zinc (Zn) injection on primary water stress corrosion cracking (PWSCC) growth behavior, crack growth tests of 10% cold-worked Alloy 600 were performed in simulated primary water environment of pressurized water reactor (PWR) at 320C with a low-concentration (5-10 ppb) Zn injection under dissolved hydrogen (DH) conditions of 5, 30, and 50 cc/kgHO. As a result of the crack growth tests, DH-dependence of crack growth rate (CGR) showed a similar tendency to the predicted CGR based on the CGR data without Zn injection, indicating almost no effect of a low-concentration Zn injection on the crack growth behavior. Moreover, the microstructural analyses of oxide films formed inside the crack and on the specimen surface were conducted, and the intake of Zn in the oxides was detected on the specimen surface, but not detected inside the crack. This result was considered to be the cause of no Zn injection effect on the crack growth behavior.
Ha, Yoosung; Tobita, Toru; Takamizawa, Hisashi; Hanawa, Satoshi; Nishiyama, Yutaka
Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 6 Pages, 2018/07
Chimi, Yasuhiro; Iwata, Keiko; Tobita, Toru; Otsu, Takuyo; Takamizawa, Hisashi; Yoshimoto, Kentaro*; Murakami, Takeshi*; Hanawa, Satoshi; Nishiyama, Yutaka
JAEA-Research 2017-018, 122 Pages, 2018/03
Warm pre-stress (WPS) effect is a phenomenon that after applying a load at a high temperature fracture does not occur in unloading during cooling, and then the fracture toughness in reloading at a lower temperature increases effectively. Engineering evaluation models to predict an apparent fracture toughness in reloading are established using experimental data with linear elasticity. However, there is a lack of data on the WPS effect for the effects of specimen size and surface crack in elastic-plastic regime. In this study, fracture toughness tests were performed after applying load-temperature histories which simulate pressurized thermal shock transients to confirm the WPS effect. The experimental results of an apparent fracture toughness tend to be lower than the predictive results using the engineering evaluation models in the case of a high degree of plastic deformation in preloading. Considering the plastic component of preloading can refine the engineering evaluation models.
Iwata, Keiko; Takamizawa, Hisashi; Ha, Yoosung; Okamoto, Yoshihiro; Shimoyama, Iwao; Honda, Mitsunori; Hanawa, Satoshi; Nishiyama, Yutaka
Photon Factory Activity Report 2017, 2 Pages, 2018/00
no abstracts in English
Uchida, Shunsuke*; Hanawa, Satoshi; Naito, Masanori*; Okada, Hidetoshi*; Lister, D. H.*
Corrosion Engineering, Science and Technology, 52(8), p.587 - 595, 2017/10
Times Cited Count:4 Percentile:19.50(Materials Science, Multidisciplinary)Based on the relationship among ECP, metal surface conditions, exposure time and other environmental conditions, a model to evaluate the ECP and corrosion rate of steel was developed by coupling a static electrochemical analysis and a dynamic oxide layer growth analysis. Major conclusion obtained on the model are as follows. The effect of HO and O concentrations on ECP were successfully explained as the effects of oxide layer growth. Hysteresis of ECP under changes in water chemistry conditions were successfully explained with the model. Decreases in ECP due to neutron exposure were explained well by radiation-induced diffusion in the oxide layers.
Hata, Kuniki; Inoue, Hiroyuki*; Kojima, Takao*; Kasahara, Shigeki; Hanawa, Satoshi; Ueno, Fumiyoshi; Tsukada, Takashi; Iwase, Akihiro*
Proceedings of Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2017 (AWC 2017) (USB Flash Drive), p.304 - 314, 2017/09
A model simulation of radiolysis of mixed solutions of NaCl and NaBr was carried out. The simulation result agreed well with the experimental result, and Br played an important role in determining the amounts of products from water radiolysis. The simulation result also showed that, in highly pure NaCl solutions, the steady-state concentration of a radolytic product, HO, was mainly controlled by three reactions (Cl + OH ClOH, ClOH Cl + OH, and ClOH + H Cl + HO), which indicated that accurate evaluation of the rate constants of these reactions was very important in improving the radiolysis simulation of solutions containing Cl. An immersion test using a low-alloy steel, SQV2A, in the mixed solutions was also carried out under irradiation. The corrosion rate increased or decreased depending on the pH or the concentrations of the halide ions in a similar way to the change in concentration of HO produced from water radiolysis, which is affected by the presence of Cl and Br. However, at high pH values (12), the corrosion rate was almost zero even though the concentration of HO was high. This could be attributed to enhancement of the passivity of test specimens at higher pH values.
Mukai, Satoru*; Umehara, Ryuji*; Hanawa, Satoshi; Kasahara, Shigeki; Nishiyama, Yutaka
Proceedings of 20th International Conference on Water Chemistry of Nuclear Reactor Systems (NPC 2016) (USB Flash Drive), 9 Pages, 2016/10
In Japanese PWR, the concentration of dissolved hydrogen in the primary coolant is controlled in the range from 25 cc/kg-HO to 35 cc/kg-HO for suppression of water decomposition. However this concentration is desired to reduce for the purpose of radiation source reduction in Japan. So, the concentration due to water radiolysis in primary coolant was evaluated at lower hydrogen concentration by the water radiolysis model in consideration of ray, fast neutron and alpha ray due to the reaction B(n,)Li. The results of evaluation showed that the water radiolysis was suppressed even if the hydrogen concentration was decreased to 5 cc/kg-HO. The effects of the different G-value and the rate constants of major reaction on the concentration of HO and O were studied under hydrogen addition. We also focused on the effect of the alpha radiolysis in boron acid water.
Hanawa, Satoshi; Uchida, Shunsuke; Hata, Kuniki; Chimi, Yasuhiro; Kasahara, Shigeki*; Nishiyama, Yutaka
Proceedings of 20th Nuclear Plant Chemistry International Conference (NPC 2016) (USB Flash Drive), 11 Pages, 2016/10
ECP is the exclusive index to evaluate corrosion condition directly at the points of interest in the mixing of neutron and -ray environment. ECP can be calculated through the combination of water radiolysis and ECP model. A water radiolysis model have been applied to experiments performed in in-pile loops in the experimental reactors and applicability was confirmed. An ECP model based on the Butler-Volmer equation was also prepared. ECP of stainless steel was measured under well controlled water chemistry condition in in-pile loop in the Halden reactor, and the model was applied to evaluate ECP measured in the Halden reactor. The measured data were well explained by the water radiolysis calculation and ECP model. Accumulation of in-pile ECP data are expected for further validation of the models.
Hanawa, Satoshi; Uchida, Shunsuke; Hata, Kuniki; Chimi, Yasuhiro; Kasahara, Shigeki*; Nishiyama, Yutaka
Proceedings of 20th Nuclear Plant Chemistry International Conference (NPC 2016) (USB Flash Drive), 10 Pages, 2016/10
The authors proposed and ECP evaluation model introducing irradiation-induced diffusion in the oxide layer to simulate neutron irradiation effect, and predicted with this model that ECP is started to depress from the neutron flux of about ten to the fourteenth per square meter. As the JMTR has in-pile loops applicable to water chemistry experiments, degree of irradiation effect on ECP appears in the in-pile loop was estimated by the model. Under oxygen injected condition, ECP in a capsule becomes constant along the vertical direction due to the presence of high amount of oxygen and hydrogen peroxide in a capsule. However, if neutron irradiation depress ECP, ECP in a capsule along vertical direction wouldn't become constant, and the degree to the decrement is detectable by experiments.