Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 612

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

RF systems of J-PARC proton synchrotrons for high-intensity longitudinal beam optimization and handling

Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Okita, Hidefumi; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.305 - 311, 2024/03

The application of MA cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons. The MA cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep without the tuning loop. The dual harmonic operation is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltage is also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.

Journal Articles

Proton diffusion in liquid 1,2,3-triazole studied by incoherent quasi-elastic neutron scattering

Shinohara, Yuya*; Iwashita, Takuya*; Nakanishi, Masahiro*; Osti, N. C.*; Kofu, Maiko; Nirei, Masami; Dmowski, W.*; Egami, Takeshi*

Journal of Physical Chemistry B, 128(6), p.1544 - 1549, 2024/02

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Improvement of the longitudinal phase space tomography at the J-PARC synchrotrons

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.

Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01

Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

Journal Articles

Development of a single-ended magnetic alloy loaded cavity in the Japan Proton Accelerator Research Complex rapid cycling synchrotron

Yamamoto, Masanobu; Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Progress of Theoretical and Experimental Physics (Internet), 2023(7), p.073G01_1 - 073G01_16, 2023/07

 Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)

The Japan Proton Accelerator Research Complex (J-PARC) Rapid Cycling Synchrotron (RCS) employs Magnetic Alloy (MA) loaded cavities. We realize multi-harmonic rf driving and beam loading compensation owing to the broadband characteristics of the MA. The currently installed cavity is the conventional type one which is designed to be driven by tube amplifiers in a push-pull operation. The push-pull operation has some advantages, i.e., suppressing a higher harmonic distortion without the beam acceleration and shortening the cavity length. However, a disadvantage arises at the high intensity beam acceleration where the multi-harmonic rf driving causes a severe imbalance of the anode voltage swing and restricts the tube operation. Although we have achieved an acceleration for the design beam power of 1 MW, the imbalance becomes an issue to further increase the beam power. We have developed a single-ended MA cavity to avoid such difficulty. The cavity has no tube imbalance intrinsically and it is found that the power consumption to drive the cavity can be reduced compared with the conventional one.

Journal Articles

Japanese Evaluated Nuclear Data Library version 5; JENDL-5

Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Abe, Yutaka*; Tsubakihara, Kosuke*; Okumura, Shin*; Ishizuka, Chikako*; Yoshida, Tadashi*; et al.

Journal of Nuclear Science and Technology, 60(1), p.1 - 60, 2023/01

 Times Cited Count:64 Percentile:99.99(Nuclear Science & Technology)

Journal Articles

Design studies on a high-power wide-band RF combiner for consolidation of the driver amplifier of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Journal of Physics; Conference Series, 2420, p.012092_1 - 012092_6, 2023/01

A power upgrade of existing 8 kW solid-state driver amplifier is required for the acceleration of high intensity proton beams on the J-PARC 3 GeV rapid cycling synchrotron. The development of a 25 kW amplifier with gallium nitride (GaN) HEMTs, based on 6.4 kW modules is on going. The combiner is a key component to achieve such a high output power over the wide bandwidth required for multi-harmonic rf operation. This paper presents preliminary design of the combiner. The circuit simulation setup and results, including the realistic magnetic core characteristics and frequency response of the cable are reported.

Journal Articles

Evaluation of higher harmonics generated in acceleration gaps during the high power beam acceleration at J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.262 - 266, 2023/01

no abstracts in English

Journal Articles

Image recognition technology is used to obtain momentum distribution and longitudinal beam shape from mountain plot image

Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; Omori, Chihiro*; Yoshii, Masahito*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.215 - 217, 2023/01

no abstracts in English

Journal Articles

Improvement of longitudinal beam tracking simulation considering the frequency response of the cavity gap voltage monitor

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*

Nuclear Instruments and Methods in Physics Research A, 1041, p.167361_1 - 167361_7, 2022/10

 Times Cited Count:1 Percentile:33.4(Instruments & Instrumentation)

Wideband RF cavities are employed in the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex. RF gap voltage generated during the high power beam acceleration includes the wake voltage and distortion derived from the tube amplifier. The signal from RF gap voltage monitors, which measure the RF gap voltage during the acceleration, includes these effects. We developed the longitudinal beam tracking simulation using the measurement of the RF gap voltage monitors. To apply the measurement of the RF gap voltage monitors to the simulation, the theoretical frequency response models of the voltage divider and the coaxial cable, which are the primary components of the cavity gap voltage monitor, are developed. By taking the frequency response into account, the tracking simulation well reproduces the measured bunch shape at 1 MW.

Journal Articles

Harmless treatment of radioactive liquid wastes for safe storage in systematic treatment of radioactive liquid waste for decommissioning project

Nakahara, Masaumi; Watanabe, So; Aihara, Haruka; Takahatake, Yoko; Arai, Yoichi; Ogi, Hiromichi*; Nakamura, Masahiro; Shibata, Atsuhiro; Nomura, Kazunori

Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07

Various radioactive wastes have been generated from Chemical Processing Facility for basic research on advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology. Many types of reagents have been used for the experiments, and some troublesome materials were produced in the course of experiments. The radioactive liquid wastes were treated for stable and safe storage using decomposition, solvent extraction, precipitation, and solidification methods. In this study, current status of harmless treatment for the radioactive liquid wastes would be reported.

Journal Articles

Influence of a positive grid biasing on RF system in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1336 - 1338, 2022/06

In order to accelerate a high intensity beam in the RCS, a large amplitude of the rf current is provided by a tube amplifier to compensate a heavy beam loading. Tetrode vacuum tubes are used in the RCS, and the control grid voltage enters into a positive region to feed such a large rf current. The positive grid biasing affects the waveform of the control grid voltage; it is deformed due to the induced control grid current under the condition of the multi-harmonic rf driving. Furthermore, the DC bias voltage drop on the control grid is observed because of the exceeding the capability for the control grid power supply. We describe the influence of the positive grid biasing in the RCS.

Journal Articles

Neutron imaging of generated water inside polymer electrolyte fuel cell using newly-developed gas diffusion layer with gas flow channels during power generation

Nasu, Mitsunori*; Yanai, Hiroshi*; Hirayama, Naoki*; Adachi, Hironori*; Kakizawa, Yu*; Shirase, Yuto*; Nishiyama, Hiromichi*; Kawamoto, Teppei*; Inukai, Junji*; Shinohara, Takenao; et al.

Journal of Power Sources, 530, p.231251_1 - 231251_11, 2022/05

 Times Cited Count:16 Percentile:89.77(Chemistry, Physical)

JAEA Reports

Experimental study on velocity distribution in the subchannels of a fuel pin bundle with wrapping wire; Evaluation of the characteristics of flow field in 3-pin bundle

Hiyama, Tomoyuki; Aizawa, Kosuke; Nishimura, Masahiro; Kurihara, Akikazu

JAEA-Research 2021-009, 29 Pages, 2021/11

JAEA-Research-2021-009.pdf:2.25MB

In sodium-cooled fast reactors, high burnup of fuel is required for practical use. It is important to predict and evaluate the flow behavior in a fuel assembly because there is a concern that the heat removal capacity of the fuel assembly with high burnup will be locally reduced due to swirling and thermal deformation of the fuel rods. In this study, flow field measurement tests were conducted using a 3-pin bundle system test specimen for the purpose of elucidating the phenomenon and constructing a verification database for thermal hydraulics analysis code. The viewpoints of the experiment for elucidating the phenomenon are as follows; (1) Overall flow behavior in the subchannel including near the wrapping wire, (2) Relationship between Reynolds number including laminar flow region and flow field, and (3) Evaluation of the effect of the presence or absence of wrapping wire on the flow field. As a result, detailed flow field data in the subchannel was obtained by PIV measurement. It was found that when the wrapping wire crossed the subchannel, the flow occurred toward adjacent subchannel and the flow occurred that follows the winding direction of the wrapping wire. It was confirmed that the tendency of the flow velocity distribution of the Reynolds number in the laminar flow region is significantly different from that of the transition region and the turbulent region under the condition. The test was conducted using a same 3-pin bundle system without the wrapping wire, and it was confirmed that mixing by the wrapping wire occurred even in the laminar flow region.

Journal Articles

Evaluation of the frequency response of the RF gap voltage monitor of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.840 - 844, 2021/10

The J-PARC RCS employs the dual-harmonic operation, in which the fundamental and the second harmonic RF voltages are used for the beam acceleration. The each harmonic voltage and phase applied for the acceleration gaps are controlled by the multiharmonic vector RF voltage control system using the signal from the cavity gap voltage monitor equipped with the one of the acceleration gaps of the each RF cavity. Since the bunch shape varies depending on the relative phase of each harmonic, it is important to evaluate the frequency response of the cavity gap voltage monitor. The measurements of frequency response of the cavity gap voltage monitor and beam tracking simulation considering the measurement were carried out. As a result, it was confirmed that the bunch shape of the beam tracking simulation reproduces the one measured at the 1MW beam operation well. The details of the frequency response measurement, the beam tracking simulation and the discussion of the cavity gap voltage monitor circuit are reported.

Journal Articles

Performance of the next-generation LLRF control system for the J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Okita, Hidefumi; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.170 - 174, 2021/10

A stable and precise LLRF (Low Level RF) control system is indispensable for acceleration of high intensity proton beam in the J-PARC RCS. The original LLRF control system had been operated without major problems for more than ten years since the start of operation of the RCS, while maintenance of the system became difficult due to the obsolesce of the old FPGAs in the modules. We developed and installed the next-generation LLRF control system based on MTCA.4. The key function of the system is the multiharmonic vector rf voltage control feedback. We describe the system overview and the commissioning results. The performance of the beam loading compensation is significantly improved.

Journal Articles

Evaluations with autoencoder whether the image used for image recognition is appropriate

Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Furusawa, Masashi*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; Omori, Chihiro*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.80 - 82, 2021/10

no abstracts in English

Journal Articles

Velocity distribution in the subchannels of a pin bundle with a wrapping wire; Evaluation of the Reynolds number dependence in a three-pin bundle

Aizawa, Kosuke; Hiyama, Tomoyuki; Nishimura, Masahiro; Kurihara, Akikazu; Ishida, Katsuji*

Mechanical Engineering Journal (Internet), 8(4), p.20-00547_1 - 20-00547_11, 2021/08

A sodium-cooled fast reactor has been designed to attain a high burn-up core in commercialized fast reactor cycle systems. The sodium-cooled fast reactor adopts a wire spacer between fuel pins. The wire spacer performs functions of securing the coolant channel and the mixing between subchannels. In high burn-up fuel subassemblies, the fuel pin deformation due to swelling and thermal bowing may decrease the local flow velocity in the subassembly and influence the heat removal capability. Therefore, understanding the flow field in a wire-wrapped pin bundle is important. This study performed particle image velocimetry (PIV) measurements using a wire-wrapped three-pin bundle water model to grasp the flow field in the subchannel under conditions, including the laminar to turbulent regions. In the region away from the wrapping wire, the maximum flow velocity was increased by decreasing the Re number. Accordingly, the PIV measurements using the three-pin bundle geometry without the wrapping wire were also conducted to understand the effect of the wrapping wires on the flow field in the subchannel. The results confirmed that the mixing due to the wrapping wire occurred, even in the laminar condition. These experimental results are useful not only for understanding the pin bundle thermal hydraulics, but also for the code validation.

Journal Articles

Consideration of triple-harmonic operation for the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3020 - 3022, 2021/08

In the J-PARC RCS, the dual-harmonic operation, in which each RF cavity is driven by superposition of the fundamental accelerating voltage and the second harmonic voltage, are employed. The dual-harmonic-operation significantly improves the bunching factor and is indispensable for acceleration of the high intensity beams. The original LLRF control system was replaced with the new system in 2019, which can control the amplitudes of the higher harmonics as well as the fundamental and second harmonics. Therefore we consider to use additionally the third harmonic voltage for further improvement of the bunching factor during acceleration. By the triple-harmonic operation, the flat RF bucket can be realized and beam simulation results indicate that the bunching factor can be improved about 30% at maximum. In this presentation, we describe the longitudinal simulation studies of the triple-harmonic operation. Also the preliminary test results are presented.

Journal Articles

Vacuum tube operation tuning for a high intensity beam acceleration in J-PARC RCS

Yamamoto, Masanobu; Okita, Hidefumi; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; et al.

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.1884 - 1886, 2021/08

Tetrode vacuum tubes in J-PARC RCS are used under a reduced filament voltage condition compared with the rating value to prolong the tube lifetime. For the first time after 60,000 hour of operation in the RCS, one tube has reached the end of its life in 2020. Therefore, the reduced filament voltage works well because the tube has been running beyond an expected lifetime suggested by the tube manufacturer. However, the reduced filament voltage decreased the electron emission from the filament. Although the large amplitude of the anode current is necessary for the high intensity beam acceleration to compensate a wake voltage, a solid-state amplifier to drive a control grid circuit almost reaches the output power limit owing to the poor electron emission from the filament. We changed the filament voltage reduction rate from 15% to 5%. The required power of the solid-state amplifier was fairly reduced, whereas the accelerated beam power remained the same. We describe the measurement results of the vacuum tube parameters in terms of the filament voltage tuning.

612 (Records 1-20 displayed on this page)