Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Chong, Y.*; Gholizadeh, R.*; Guo, B.*; Tsuru, Tomohito; Zhao, G.*; Yoshida, Shuhei*; Mitsuhara, Masatoshi*; Godfrey, A.*; Tsuji, Nobuhiro*
Acta Materialia, 257, p.119165_1 - 119165_14, 2023/09
Times Cited Count:0 Percentile:67.58Metastable titanium alloys possess excellent strain-hardening capability, but suffer from a low yield strength. As a result, numerous attempts have been made to strengthen this important structural material in the last decade. Here, we explore the contributions of grain refinement and interstitial additions in raising the yield strength of a Ti-12Mo (wt.%) metastable
titanium alloy. Surprisingly, rather than strengthening the material, grain refinement actually lowers the ultimate tensile strength in this alloy. This unexpected and anomalous behavior is attributed to a significant enhancement in strain-induced
martensite phase transformation, where in-situ synchrotron X-ray diffraction analysis reveals, for the first time, that this phase is much softer than the parent
phase. Instead, a combination of both oxygen addition and grain refinement is found to realize an unprecedented strength-ductility synergy in a Ti-12Mo-0.3O (wt.%) alloy. The advantageous effect of oxygen solutes in this ternary alloy is twofold. Firstly, solute oxygen largely suppresses strain-induced transformation to the
martensite phase, even in a fine-grained microstructure, thus avoiding the softening effect of excessive amounts of
martensite. Secondly, oxygen solutes readily segregate to twin boundaries, as revealed by atom probe tomography. This restricts the growth of
deformation twins, thereby promoting more extensive twin nucleation, leading to enhanced microstructural refinement. The insights from our work provide a cost-effective rationale for the design of strong yet tough metastable
titanium alloys, with significant implications for more widespread use of this high strength-to-weight structural material.
Hirata, Yoshinobu*; Nakagawa, Hiroshi; Yamauchi, Hiroki; Kaneko, Koji; Hagihara, Masato; Yamaguchi, Hideyuki*; Omoto, Chie*; Katsuno, Nakako*; Imaizumi, Teppei*; Nishizu, Takahisa*
Food Hydrocolloids, 141, p.108728_1 - 108728_7, 2023/08
Crystallinity is reflected in the mechanical properties of foods and materials. Crystallinity should be related to the structural dynamics of starch. In this study, we used quasi-elastic neutron scattering (QENS) to investigate changes in the molecular dynamics of cooked rice starch during retrogradation. The width of the measured QENS narrowed with retrogradation. The elastic incoherent structure factor (EISF) increased, which indicated that the molecular dynamics are spatially suppressed upon retrogradation. Analysis of EISF with a bimodal continuous diffusion model, where low and high mobilities are assumed to correspond to crystalline and amorphous phases, respectively, showed that the fraction of the low-mobility component increases with retrogradation.
Kaneko, Koji; Tabata, Chihiro; Hagihara, Masato; Yamauchi, Hiroki; Kubota, Masato; Osakabe, Toyotaka; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 92(8), p.085001_1 - 085001_2, 2023/08
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Otsuka, Satoshi; Shizukawa, Yuta; Tanno, Takashi; Imagawa, Yuya; Hashidate, Ryuta; Yano, Yasuhide; Onizawa, Takashi; Kaito, Takeji; Onuma, Masato*; Mitsuhara, Masatoshi*; et al.
Journal of Nuclear Science and Technology, 60(3), p.288 - 298, 2023/03
Times Cited Count:2 Percentile:77.29(Nuclear Science & Technology)JAEA has been developing 9Cr-oxide dispersion strengthened (ODS) tempered martensitic steel(TMS) as a candidate material for the fuel cladding tubes of sodium-cooled fast reactors(SFRs). The reliable prediction of in-reactor creep-rupture strength is critical for implementing the 9Cr-ODS TMS cladding tube in the SFR. This study investigated the quantitative correlation between the creep properties of 9Cr-ODS TMS at 700 C and the dispersions of nanosized oxides by analyzing the creep data and the material's nanostructure. The possibility of deriving a formula for estimating the in-reactor creep properties of 9Cr-ODS TMSs based on an analysis of the nanostructure of neutron-irradiated 9Cr-ODS TMSs was also discussed. The creep properties of 9Cr-ODS TMS at 700
C closely correlated with the dispersion of nanosized oxide particles. The correlation between creep-rupture lives and nanosized oxide particle dispersion was determined using existing creep models. The elucidation of correlation between the stress exponent of secondary creep rate and the nanostructure is essential to enhance future modeling reliability and formulation.
Mitsuhara, Masatoshi*; Kurino, Koichi*; Yano, Yasuhide; Otsuka, Satoshi; Toyama, Takeshi*; Onuma, Masato*; Nakashima, Hideharu*
Tetsu To Hagane, 109(3), p.189 - 200, 2023/03
Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)Oxide Dispersion Strengthened (ODS) ferritic steel, a candidate material for fast reactor fuel cladding, has low thermal expansion, good thermal conductivity, and excellent resistance to irradiation damage and high temperature strength. The origin of the excellent high-temperature strength lies in the dispersion of fine oxides. In this study, creep tests at 700 or 750C, which are close to the operating temperatures of fast reactors, and high-temperature tensile tests at 900 to 1350
C, which simulate accident conditions, were conducted on 9Cr ODS ferritic steels, M11 and MP23, and 12Cr ODS ferritic steel, F14, to confirm the growth behavior of oxides. In the M11 and F14 creep test samples, there was little oxide growth or decrease in number density from the initial state, indicating that dispersion strengthening by oxides was effective during deformation. After creep deformation of F14, the development of dislocation substructures such as dislocation walls and subgrain boundaries was hardly observed, and mobile dislocations were homogeneously distributed in the grains. The dislocation density increased with increasing stress during the creep test. In the high-temperature ring tensile tests of MP23 and F14, the strength of both steels decreased at higher temperatures. In MP23, elongation decreased with increasing test temperature from 900 to 1100
C, but increased at 1200
C, decreased drastically at 1250
C, and increased again at 1300
C. In F14, elongation decreased with increasing temperature. It was inferred that the formation of the
-ferrite phase was responsible for this complex change in mechanical properties of MP23 from 1200 to 1300
C.
Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.
Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02
Times Cited Count:1 Percentile:84.83Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size 2.0
m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced
dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.
Fujihara, Masayoshi; Hagihara, Masato; Morita, Katsuhiro*; Murai, Naoki; Koda, Akihiro*; Okabe, Hirotaka*; Mitsuda, Setsuo*
Physical Review B, 107(5), p.054435_1 - 054435_8, 2023/02
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)The = 1/2 Heisenberg linear chain antiferromagnet is the simplest spin model; nevertheless it serves as a platform for various quantum many-body phenomena. Here, we report the magnetic behavior of a quasi-one-dimensional antiferromagnet KCuPO
H
O. A long-range commensurate antiferromagnetic order with ordered moment 0.31(1)
per spin occurs at
= 11.7(1) K. Above
, the inelastic neutron excitation is characterized by a two spinon continuum. The intrachain interaction
and interchain interaction
are estimated to be 172 K and 4.25(4) K, respectively; thus the ratio of the
/
= 0.0247(3). At lower energies, below
, a spin gap is observed in the dispersive excitations. These results are consistent with characteristics observed in weakly interacting
= 1/2 Heisenberg chain system.
Yamagishi, Shigetada*; Hayashida, Takeshi*; Misawa, Ryusuke*; Kimura, Kenta*; Hagihara, Masato; Murata, Tomoki*; Hirose, Sakyo*; Kimura, Tsuyoshi*
Chemistry of Materials, 35(2), p.747 - 754, 2023/01
Times Cited Count:2 Percentile:91.9(Chemistry, Physical)Aihara, Jun; Kuroda, Masatoshi*; Tachibana, Yukio
Mechanical Engineering Journal (Internet), 9(4), p.21-00424_1 - 21-00424_13, 2022/08
It is important to improve oxidation resistance of fuel for huge oxygen ingress into core to improve safety of high temperature gas-cooled reactors (HTGRs), because almost volume of cores of HTGRs consist of graphite. In this study, simulated oxidation resistant fuel elements, of which matrix is mixture of SiC and graphite, has been fabricated by hot press method. In order to maintain structural integrity of fuel element under accident conditions, high-strength fuel elements should be developed. In order to identify optimal hot press conditions for preparing high-strength fuel elements, effect of hot press conditions on mechanical strength properties of fuel elements should be evaluated quantitatively. In the present study, response surface model, which represents relationship between hot press conditions and mechanical strength properties, has been constructed by introducing statistical design of experiments (DOE) approaches, and optimal hot press conditions were estimated by model.
Ohgama, Kazuya; Hara, Toshiharu*; Ota, Hirokazu*; Naganuma, Masayuki; Oki, Shigeo; Iizuka, Masatoshi*
Journal of Nuclear Science and Technology, 59(6), p.735 - 747, 2022/06
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Iwamoto, Chihiro*; Takamura, Masato*; Ueno, Kota*; Kataoka, Minami*; Kurihara, Ryo*; Xu, P. G.; Otake, Yoshie*
ISIJ International, 62(5), p.1013 - 1022, 2022/05
Times Cited Count:1 Percentile:43.26(Metallurgy & Metallurgical Engineering)Metoki, Naoto; Shibata, Kaoru; Matsuura, Masato*; Kitazawa, Hideaki*; Suzuki, Hiroyuki*; Yamauchi, Hiroki; Hagihara, Masato; Frontzek, M. D.*; Matsuda, Masaaki*
Journal of the Physical Society of Japan, 91(5), p.054710_1 - 054710_6, 2022/05
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Hyperfine splitting of Nd nuclei in NdPdAl
has been studied by means of high-resolution neutron spectroscopy. We observed inelastic peaks at
eV coming from the hyperfine splitting in the magnetically ordered phase due to the hyperfine interactions between Nd nuclei (
=7/2) and the 4
electrons with
ground state composed of mainly
. At very low temperatures, nuclear spin of Nd is polarized with increasing occupation probability of low energy levels and contributes to the enhancement of the antiferromagnetic Bragg intensities: the elastic non-spin-flip channel is dominant. As an application of this phenomenon, we determined the Nd moment and hyperfine splitting from the temperature dependence of an antiferromagnetic Bragg intensities for Nd
Pd
Ge
.
Kakimoto, Kazuo*; Takada, Saki*; Ota, Hiroto*; Hayaguchi, Yuya*; Hagihara, Masato; Torii, Shuki*; Kamiyama, Takashi*; Mitamura, Hiroyuki*; Tokunaga, Masashi*; Hatakeyama, Atsushi*; et al.
Journal of the Physical Society of Japan, 91(5), p.054704_1 - 054704_7, 2022/05
Times Cited Count:1 Percentile:35.17(Physics, Multidisciplinary)Kakimoto, Kazuo*; Ota, Hiroto*; Haraguchi, Yuya*; Hagihara, Masato; Torii, Shuki*; Kamiyama, Takashi*; Katori, Hiroko*
Journal of the Physical Society of Japan, 91(5), p.054707_1 - 054707_9, 2022/05
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Shimono, Seiya*; Ishibashi, Hiroki*; Nagayoshi, Yusuke*; Ikeno, Hidekazu*; Kawaguchi, Shogo*; Hagihara, Masato; Torii, Shuki*; Kamiyama, Takashi*; Ichihashi, Katsuya*; Nishihara, Sadafumi*; et al.
Journal of Physics and Chemistry of Solids, 163, p.110568_1 - 110568_7, 2022/04
Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)Uchiyama, Yusuke*; Tokunaga, Natsuki*; Azuma, Kohei*; Kamidaira, Yuki; Tsumune, Daisuke*; Iwasaki, Toshiki*; Yamada, Masatoshi*; Tateda, Yutaka*; Ishimaru, Takashi*; Ito, Yukari*; et al.
Science of the Total Environment, 816, p.151573_1 - 151573_13, 2022/04
Times Cited Count:5 Percentile:72.85(Environmental Sciences)no abstracts in English
Watanabe, Masari*; Kurita, Nubuyuki*; Tanaka, Hidekazu*; Ueno, Wataru*; Matsui, Kazuki*; Goto, Takayuki*; Hagihara, Masato
Physical Review B, 105(5), p.054414_1 - 054414_12, 2022/02
Times Cited Count:2 Percentile:59.72(Materials Science, Multidisciplinary)Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki
Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.
Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Koarai, Kazuma; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; et al.
KEK Proceedings 2021-2, p.91 - 96, 2021/12
We examined whether the ESR dose estimation method could be applied to wild Japanese macaque. In this work, we investigated the enamel preparation protocol and the analytical method of the ESR spectra.
Hayashida, Takeshi*; Uemura, Yohei*; Kimura, Kenta*; Matsuoka, Satoshi*; Hagihara, Masato; Hirose, Sakyo*; Morioka, Hitoshi*; Hasegawa, Tatsuo*; Kimura, Tsuyoshi*
Physical Review Materials (Internet), 5(12), p.124409_1 - 124409_10, 2021/12
Times Cited Count:11 Percentile:73.3(Materials Science, Multidisciplinary)