Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; Xu, P. G.; Parker, J. D.*; Shinohara, Takenao; Chen, J.*; Wu, S. C.*
Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08
Times Cited Count:0 Percentile:0.00(Mechanics)Fujita, Yoshitaka; Hu, X.*; Yang, Y.*; Kitagawa, Taiga*; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; Hori, Junichi*; Do, T. M. D.*; Suzuki, Tatsuya*; Suematsu, Hisayuki*; et al.
KURNS Progress Report 2023, P. 122, 2024/07
no abstracts in English
Hirouchi, Jun; Kujiraoka, Ikuo; Takahara, Shogo; Takada, Momo*; Schneider, T.*; Kai, Michiaki*
Journal of Radiological Protection, 44(2), p.021510_1 - 021510_10, 2024/06
Times Cited Count:0 Percentile:0.00(Environmental Sciences)no abstracts in English
Miyazaki, Kanako*; Takehara, Masato*; Minomo, Kenta*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Saito, Takumi*; Onuki, Toshihiko*; Takano, Masahide; Shiotsu, Hiroyuki; et al.
Journal of Hazardous Materials, 470(15), p.134104_1 - 134104_11, 2024/05
Times Cited Count:0 Percentile:0.00(Engineering, Environmental)Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:6 Percentile:75.19(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the () reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-Rpke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the Be ground-state as a rather compact nuclear molecule.
Ngo, M. C.*; Fujita, Yoshitaka; Suzuki, Tatsuya*; Do, T. M. D.*; Seki, Misaki; Nakayama, Tadachika*; Niihara, Koichi*; Suematsu, Hisayuki*
Inorganic Chemistry, 62(32), p.13140 - 13147, 2023/08
Times Cited Count:3 Percentile:61.82(Chemistry, Inorganic & Nuclear)Technetium-99m (Tc) is one of the most important radioisotopes for diagnostic radio-imaging applications. Tc is a daughter product of the Mo isotope. There are two methods used to produce Mo/Tc: the nuclear fission (n,f) and the neutron capture (n,) methods. Between them, the (n,f) method is the main route, used for approximately 90% of the world's production. However, the (n,f) method faces numerous problems, including the use of highly enriched uranium, the release of highly radioactive waste, and nonproliferation problems. Therefore, the (n,) method is being developed as a future replacement for the (n,f) method. In this work, -MoO whiskers prepared by the thermal evaporation method and -MoO particles were irradiated in a nuclear reactor to produce Mo/Tc via neutron capture. The irradiated targets were dispersed into water to extract the Mo/Tc. As a result, -MoO whisker yielded higher Mo extraction rate than that from -MoO. In addition, by comparing the dissolved Mo concentrations in water, we clarified a prominent hot-atom of -MoO whiskers. This research is the first demonstration of -MoO being used as an irradiation target in the neutron capture method. On the basis of the results, -MoO is considered a promising irradiation target for producing Mo/Tc by neutron capture and using water for the radioisotope extraction process in the future.
Fueda, Kazuki*; Komiya, Tatsuki*; Minomo, Kenta*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Shiotsu, Hiroyuki; Onuki, Toshihiko*; Grambow, B.*; Law, G. T. W.*; et al.
Chemosphere, 328, p.138566_1 - 138566_12, 2023/07
Times Cited Count:1 Percentile:20.32(Environmental Sciences)Wakamatsu, Katsuhiro*; Sekihara, Akihori*; Yamaguchi, Yoshihiko*; Matsushima, Ryo*; Matsumura, Daiju; Kuila, T.*; Yoshikawa, Hirofumi*
Batteries & Supercaps (Internet), 6(1), p.e202200385_1 - e202200385_8, 2023/01
Times Cited Count:4 Percentile:36.27(Electrochemistry)Ramadhan, R. S.*; Glaser, D.*; Soyama, Hitoshi*; Kockelmann, W.*; Shinohara, Takenao; Pirling, T.*; Fitzpatrick, M. E.*; Tremsin, A. S.*
Acta Materialia, 239, p.118259_1 - 118259_12, 2022/10
Times Cited Count:7 Percentile:55.14(Materials Science, Multidisciplinary)Do, S.-H.*; Paddison, J. A. M.*; Sala, G.*; Williams, T. J.*; Kaneko, Koji; Kuwahara, Keitaro*; May, A. F.*; Yan, J.*; McGuire, M. A.*; Stone, M. B.*; et al.
Physical Review B, 106(6), p.L060408_1 - L060408_6, 2022/08
Times Cited Count:13 Percentile:82.68(Materials Science, Multidisciplinary)Maamoun, I.; Bensaida, K.*; Eljamal, R.*; Falyouna, O.*; Tanaka, Kazuya; Tosco, T.*; Sugihara, Yuji*; Eljamal, O.*
Journal of Molecular Liquids, 358, p.119216_1 - 119216_13, 2022/07
Times Cited Count:39 Percentile:98.99(Chemistry, Physical)Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English
Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Grsic, Z.*; Halsall, C.*; Heinrich, G.*; Helebrant, J.*; Hettrich, S.*; Kua, P.*; Mancini, F.*; et al.
IAEA-TECDOC-2001, 226 Pages, 2022/06
The IAEA organized a programme from 2012 to 2015 entitled Modelling and Data for Radiological Impact Assessments (MODARIA), which aimed to improve capabilities in the field of environmental radiation dose assessment by acquiring improved data, model testing and comparison of model inputs, assumptions and outputs, reaching a consensus on modelling philosophies, aligning approaches and parameter values, developing improved methods and exchanging information. This publication describes the activities of Working Group 2, Exposures in Contaminated Urban Environments and Effect of Remedial Measures.
Maamoun, I.; Falyouna, O.*; Eljamal, R.*; Bensaida, K.*; Tanaka, Kazuya; Tosco, T.*; Sugihara, Yuji*; Eljamal, O.*
Journal of Environmental Chemical Engineering, 10(3), p.107431_1 - 107431_17, 2022/06
Times Cited Count:44 Percentile:95.69(Engineering, Environmental)Takahara, Shogo; Charnock, T. W.*; Silva, K.*; Hwang, W. T.*; Lee, J.*; Yu, C.*; Kamboj, S.*; Yankovich, T.*; Thiessen, K. M.*
Journal of Radiological Protection, 42(2), p.020517_1 - 020517_13, 2022/06
Times Cited Count:0 Percentile:0.00(Environmental Sciences)State-of-the-art dose assessment models were applied to estimate doses to the population in urban areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Assessment results were compared among five models, and comparisons of model predictions with actual measurements were also made. Assessments were performed using both probabilistic and deterministic approaches. Predicted dose distributions in indoor and outdoor workers from a probabilistic approach were in good agreement with the actual measurements. In addition, when the models were applied to assess the doses to a representative person, based on a concept suggested by the International Commission on Radiological Protection (ICRP), it was evident that doses to the representative person obtained with a deterministic approach were always higher than those obtained with a probabilistic approach.
Thiessen, K. M.*; Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Federspiel, L.; Grai, B.*; Grsic, Z.*; Helebrant, J.*; Hettrich, S.*; Hulka, J.*; et al.
Journal of Radiological Protection, 42(2), p.020502_1 - 020502_8, 2022/06
Times Cited Count:5 Percentile:72.25(Environmental Sciences)Fueda, Kazuki*; Takami, Ryu*; Minomo, Kenta*; Morooka, Kazuya*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Saito, Takumi*; Shiotsu, Hiroyuki; Onuki, Toshihiko*; et al.
Journal of Hazardous Materials, 428, p.128214_1 - 128214_10, 2022/04
Times Cited Count:8 Percentile:63.45(Engineering, Environmental)Iwamoto, Yosuke; Yoshida, Makoto*; Meigo, Shinichiro; Yonehara, Katsuya*; Ishida, Taku*; Nakano, Keita; Abe, Shinichiro; Iwamoto, Hiroki; Spina, T.*; Ammigan, K.*; et al.
JAEA-Conf 2021-001, p.138 - 143, 2022/03
To predict the operating lifetime of materials in high-energy radiation environments at proton accelerator facilities, Monte Carlo code are used to calculate the number of displacements per atom (dpa). However, there is no experimental data in the energy region above 30 GeV. In this presentation, we introduce our experimental plan for displacement cross sections with 120-GeV protons at Fermilab Test Beam Facility. Experiments will be performed for the US fiscal year 2022. We developed the sample assembly with four wire sample of Al, Cu, Nb and W with 250-m diameter and 4-cm length. The sample assembly will be maintained at around 4 K by using a cryocooler in a vacuum chamber. Then, changes in the electrical resistivity of samples will be obtained under 120-GeV proton irradiation. Recovery of the accumulated defects through isochronal annealing, which is related to the defect concentration in the sample, will also be measured after the cryogenic irradiation.
Barucci, M. A.*; Reess, J.-M.*; Bernardi, P.*; Doressoundiram, A.*; Fornasier, S.*; Le Du, M.*; Iwata, Takahiro*; Nakagawa, Hiromu*; Nakamura, Tomoki*; Andr, Y.*; et al.
Earth, Planets and Space (Internet), 73(1), p.211_1 - 211_28, 2021/12
Times Cited Count:18 Percentile:82.30(Geosciences, Multidisciplinary)The MMX InfraRed Spectrometer (MIRS) is an imaging spectrometer on board of MMX JAXA mission. MIRS is built at LESIA-Paris Observatory in collaboration with four other French laboratories, collaboration and financial support of CNES and close collaboration with JAXA and MELCO. The instrument is designed to fully accomplish MMX's scientific and measurement objectives. MIRS will remotely provide near-infrared spectral maps of Phobos and Deimos containing compositional diagnostic spectral features that will be used to analyze the surface composition and to support the sampling site selection. MIRS will also study Mars atmosphere, in particular to spatial and temporal changes such as clouds, dust and water vapor.