Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 283

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status of the laser stripping of H$$^{-}$$ beam at J-PARC RCS

Saha, P. K.; Harada, Hiroyuki; Yoneda, Hitoki*; Michine, Yurina*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.59 - 63, 2023/11

Journal Articles

Beam separation experiment with prototype non-destructive electrostatic septum and study for device improvement

Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Sato, Atsushi*; Yamada, Ippei; Chimura, Motoki; Kojima, Kunihiro; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.526 - 530, 2023/11

We have been developing "Non-destructive electrostatic septum" for a slow extraction. This septum has multiple electrodes placed around the region without the beam hitting and separate the beam by its electric field. To evaluate its electric field, we have built a prototype septum and a test machine, which consists of an electron gun and monitors. This test machine can measure the electric field indirectly by using a narrow electron beam. The experiment results of prototype septum is good agreement with the calculation one. However, this electric field distribution is not enough to separate the beam. A step function-like electric field distribution is ideal for the beam separation with minimal negative effect on the beam. We have studied to improve the electrode configuration to match the beam shape. In this paper, we present the result of the electric field measurements and the septum improvement. Additionally, we describe the future plan of this development.

Journal Articles

Demonstration of a kicker impedance reduction scheme with diode stack and resistors by operating the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

Shobuda, Yoshihiro; Harada, Hiroyuki; Saha, P. K.; Takayanagi, Tomohiro; Tamura, Fumihiko; Togashi, Tomohito; Watanabe, Yasuhiro; Yamamoto, Kazami; Yamamoto, Masanobu

Physical Review Accelerators and Beams (Internet), 26(5), p.053501_1 - 053501_45, 2023/05

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

At the Rapid Cycling Synchrotron (RCS) in Japan Proton Accelerator Research Complex (J-PARC), theoretical predictions have indicated that the kicker-impedance would excite the beam-instability. A 1 MW beam with large emittance can be delivered to the Material and Life Science Experimental Facility (MLF) through suppression of the beam instabilities by choosing the appropriate machine parameters. However, we require other high-intensity and high-quality smaller emittance beams (than the 1 MW beam) for the Main Ring (MR). Hence, we proposed a scheme for suppressing the kicker-impedance by using prototype diodes and resistors, thereby demonstrating the effect on the kicker impedance reduction. However, the J-PARC RCS must be operated with a repetition rate of 25 Hz, which urged us to consider special diodes that are tolerant to heating. After developments, we have demonstrated that the special diodes with resistors can suppress the beam instability by reducing the kicker impedance. Enhanced durability of the prototype diodes and resistors for the 25 Hz operation was also realized. Moreover, the new diodes and the resistors have negligible effect on the extracted beam from the RCS. From a simulation point of view, the scheme can be employed for at least 5 MW beam operation within the stipulated specifications.

Journal Articles

Investigation of niobium surface roughness and hydrogen content with different polishing conditions for performance recovery of superconducting QWRs in JAEA Tokai-Tandem Accelerator

Kamiya, Junichiro; Nii, Keisuke*; Kabumoto, Hiroshi; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; Matsuda, Makoto; Moriya, Katsuhiro; Ida, Yoshiaki*; et al.

e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.344 - 349, 2023/05

no abstracts in English

Journal Articles

Recent results of beam loss mitigation and extremely low beam loss operation of J-PARC RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Yoshimoto, Masahiro; Hotchi, Hideaki*

Journal of Physics; Conference Series, 2420, p.012040_1 - 012040_7, 2023/01

Journal Articles

Reports of electro-polishing implementation for quarter-wave resonators, 2

Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01

no abstracts in English

Journal Articles

Achievement of low beam loss at high-intensity operation of J-PARC 3 GeV RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Yoshimoto, Masahiro; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Hatakeyama, Shuichiro; Moriya, Katsuhiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1 - 5, 2023/01

Journal Articles

Status of POP demonstration of 400 MeV H$$^{-}$$ laser stripping at J-PARC RCS

Saha, P. K.; Harada, Hiroyuki; Kinsho, Michikazu; Yoneda, Hitoki*; Michine, Yurina*; Sato, Atsushi*; Shibata, Takanori*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.272 - 276, 2023/01

Journal Articles

Study of non-destructive slow beam extraction method in particle accelerator

Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Yamada, Ippei; Chimura, Motoki; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.503 - 507, 2023/01

Synchrotron accelerators realize physics experiments and radiation cancer treatment using the slow extraction technique, in which beams are stored in the ring and gradually delivered. We have devised and are currently developing a "non-destructive electrostatic septum" based on a new method, which in principle cannot be solved by conventional methods and is a cause of equipment failure and output limitation. It is ideal to generate a force distribution similar to a staircase function with discontinuous gaps at the boundary. In this presentation, we will show the calculation method for optimizing the electrode and wire configuration to generate a Lorentz force with a distribution similar to a staircase function in vacuum, and the calculation results of the beam breakup due to the generated Lorentz force. The compact proof-of-principle machine developed for the ongoing demonstration of this method will also be introduced.

Journal Articles

Interfacial distribution of Nafion ionomer thin films on nitrogen-modified carbon surfaces

Yoshimune, Wataru*; Kikkawa, Nobuaki*; Yoneyama, Hiroaki*; Takahashi, Naoko*; Minami, Saori*; Akimoto, Yusuke*; Mitsuoka, Takuya*; Kawaura, Hiroyuki*; Harada, Masashi*; Yamada, Norifumi*; et al.

ACS Applied Materials & Interfaces, 14(48), p.53744 - 53754, 2022/11

 Times Cited Count:6 Percentile:59.75(Nanoscience & Nanotechnology)

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Beam emittance growth due to the strong space-charge field at low energy of a high-intensity ion linac and its mitigation using an octupole magnetic field

Chimura, Motoki; Harada, Hiroyuki; Kinsho, Michikazu

Progress of Theoretical and Experimental Physics (Internet), 2022(6), p.063G01_1 - 063G01_26, 2022/06

 Times Cited Count:1 Percentile:28(Physics, Multidisciplinary)

In the low-energy region of a high-intensity ion linac, a strong space-charge field causes a rapid beam emittance growth over a short distance of only few meters. The beam emittance growth leads to a beam loss and the machine activation raising a serious issue for regular maintenance of the accelerator component and beam power ramp up. In this work, we studied the mechanism of beam emittance growth due to the space-charge field based on three-dimensional particle-tracking simulation and theoretical considerations. Numerical simulations done for the high-intensity linac at J-PARC shows that the nonlinear terms in the space-charge field directly cause a beam emittance growth and beam halo formation. Then, we also propose a method to mitigate the beam emittance growth by using an octupole magnetic field, which arises as one of the nonlinear terms in the space-charge field. By applying this method in the simulation, we have succeeded mitigating the beam emittance growth.

JAEA Reports

Decommissioning of the Plutonium Research Building No.1 (Plan and Present Status)

Komuro, Michiyasu; Kanazawa, Hiroyuki; Kokusen, Junya; Shimizu, Osamu; Honda, Junichi; Harada, Katsuya; Otobe, Haruyoshi; Nakada, Masami; Inagawa, Jun

JAEA-Technology 2021-042, 197 Pages, 2022/03

JAEA-Technology-2021-042.pdf:16.87MB

Plutonium Research Building No.1 was constructed in 1960 for the purpose of establishing plutonium handling technology and studying its basic physical properties. Radiochemical research, physicochemical research and analytical chemistry regarding solutions and solid plutonium compounds had been doing for the research program in Japan Atomic Energy Agency (JAEA). In 1964, the laboratory building was expanded and started the researching plutonium-uranium mixed fuel and reprocessing of plutonium-based fuel, playing an advanced role in plutonium-related research in Japan. Since then, the research target has been expanded to include transplutonium elements, and it has functioned as a basic research facility for actinides. The laboratory is constructed by concrete structure and it has the second floor, equipped with 15 glove boxes and 4 chemical hoods. Plutonium Research Building No.1 was decided as one of the facilities to be decommissioned by Japan Atomic Energy Agency Reform Plan in September 2014. So far, the contamination survey of the radioactive materials in the controlled area, the decontamination of glove boxes, and the consideration of the equipment dismantling procedure have been performed as planned. The radioisotope and nuclear fuel materials used in the facility have been transfer to the other facilities in JAEA. The decommissioning of the facility is proceeding with the goal of completing by decommissioning the radiation controlled area in 2026. In this report, the details of the decommissioning plan and the past achievements are reported with the several data.

Journal Articles

Reports of electropolishing implementation for quarter-wave resonators

Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.334 - 337, 2021/10

no abstracts in English

Journal Articles

Recent progress of laser stripping POP demonstration study at J-PARC RCS

Saha, P. K.; Harada, Hiroyuki; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.656 - 660, 2021/10

Journal Articles

Foil hits reduction by minimizing injection beam size at the foil in J-PARC RCS

Saha, P. K.; Yoshimoto, Masahiro; Okabe, Kota; Harada, Hiroyuki; Tamura, Fumihiko; Hotchi, Hideaki*

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.590 - 593, 2021/08

Journal Articles

Simulation study of heavy ion acceleration in J-PARC

Harada, Hiroyuki; Saha, P. K.; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011028_1 - 011028_6, 2021/03

Recently, humankind had big discovery about neutron star, which is great big nuclear in the space. They are discovery of neutron star with twice mass of solar in 2010 and detection of gravity wave when two neutron stars incorporate in 2017. In order to understand the high dense matter like the neutron star, project of experimental researches by using accelerated heavy ion beams are planed in the world. The J-PARC facility consists of three accelerators, which are 400 MeV linac, 3 GeV rapid cycling synchrotron and Main Ring synchrotron. The accelerated MW class high intensity proton beams are used in many experiments. We have simulation study of the heavy ion beam in J-PARC to fully utilize high intensity ability of J-PARC. We propose the accelerator scheme of the beam in J-PARC and the intensity will reach to the world record. In my talk, I will introduce the accelerator scheme for the high-intensity heavy ion beam in J-PARC.

Journal Articles

Development of laser system for laser stripping injection

Harada, Hiroyuki; Saha, P. K.; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011026_1 - 011026_6, 2021/03

The charge-exchange multi-turn injection by using a carbon stripper foil is adopted in high-intensity proton ring accelerators worldwide. It is a beneficial method to compress the pulsed proton beam with high intensity but there are serious issues for high intensity. First issue is a short lifetime of the foil by deformation or breaking itself. Another issue is high radiation dose corresponding to the scattered particles on the foil. Therefore, a non-destructive stripping injection method is required for higher intensity proton beam. We newly propose a non-destructive method of H$$^{-}$$ stripping by using only laser. The new method is called "laser stripping injection". To establish our method, we are preparing for a POP (Proof-of-Principle) experiment of 400 MeV H- stripping to proton at J-PARC. In our presentation we will present the current status of laser system development for laser stripping injection at J-PARC.

Journal Articles

New method for high resolution analysis of betatron tune in a rapid cycling synchrotron or a booster ring

Harada, Hiroyuki; Hayashi, Naoki

JPS Conference Proceedings (Internet), 33, p.011027_1 - 011027_6, 2021/03

The transverse betatron tune is one of the most important key parameters in a ring accelerator because emittance growth and beam loss occur directly in case of crossing a betatron resonance. Especially, the tune must be required a controll with high accuracy in high intensity proton accelerator from the view point of space charge force and the beam instability. In general measurement method, the betatron tune is measured by analyzing the detected beam oscillation on Fourier transform. However, the beam is quickly accelerated and the revolution frequency of the beam changes quickly in a rapid cycling synchrotron. So, the tune accuracy is not improved. A new method was developed for high resolution analysis of the tune and was evaluated in J-PARC accelerator. Tune accuracy was successfully improved from 0.013 to less than 0.001. Tune controll with high accuracy is base for high-intensity beam. In this paper, the new method is introduced and the measured result in J-PARC is report.

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

283 (Records 1-20 displayed on this page)