Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Yamaguchi, Yoshihito; Hasegawa, Kunio; Li, Y.

Journal of Pressure Vessel Technology, 142(4), p.041507_1 - 041507_6, 2020/08

Times Cited Count：0 Percentile：100(Engineering, Mechanical)The phenomenon of crack closure is important in the prediction of fatigue crack growth. Several experimental data indicate the closing of fatigue cracks both under negative and positive loads at constant amplitude loading cycles, depending on the magnitude of stress amplitude and stress ratio. Appendix A-4300 of the ASME Code Section XI provides two equations of fatigue crack growth rates expressed by the stress intensity factor range for ferritic steels under negative stress ratio. The boundary of two fatigue crack growth rates is classified with the magnitude of applied stress intensity factor range, in consideration of the crack closure. The boundary value provided by the ASME Code Section XI is validated in this study through an investigation of the influence of the magnitude of the applied stress intensity factor range on crack closure, with the application of fatigue crack growth tests using ferritic steel specimens in air environment at room and high temperatures. Crack closures are obtained as a parameter of stress ratio, and herein, were found to occur at a smaller applied stress intensity factor range, as opposed to the definition given by Appendix A-4300.

Hasegawa, Kunio; Li, Y.; Lacroix, V.*; Mares, V.*

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 6 Pages, 2020/08

Authors have developed more precise equations using the Limit Load Criteria, which is called Modified Limit Load Criteria, hereafter. As the results of the Modified Limit Load Criteria, failure stresses for external flawed pipes are always smaller than the failure stresses obtained by the Limit Load Criteria provided by the ASME Code Section XI. It seems that the allowable flaw sizes of the Acceptance Standards provided by the ASME Code Section XI are less conservative for external flaws. The objective of this paper is to demonstrate difference of failure stresses by the Limit Load Criteria and Modified Limit Load Criteria for external flawed pipes. In addition, the allowable flaws of the Acceptance Standards are examined by large and small diameter pipes with external flaws using the Modified Limit Load Criteria.

Dulieu, P.*; Lacroix, V.*; Hasegawa, Kunio

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 7 Pages, 2020/08

When detected flaws are in close proximity, proximity rules given in the Fitness-foe Service codes require to combine the interacting flaws into a single flaw. ASME Code Case N877-1 provides alternative proximity rules for multiple radial oriented planar flaws. The calculations of flaw interaction have been performed under pure membrane stress. However, actual loading conditions induce non-uniform stresses in the component thickness direction. The objective of this paper is assess the suitability of ASME Code Case N877-1 with regards to the presence of a bending part in the applied stress distribution. For that purpose, various applied stress profiles and flaw configurations are covered. The effect on flaw interaction is assessed trough three-dimensional XFEM analyses.

Lacroix, V.*; Dulieu, P.*; Hasegawa, Kunio; Mares, V.*

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 8 Pages, 2020/08

When flaws are detected in pressure retaining components, a flaw characterization has to be carried out in order to determine unequivocally the flaw geometry. This flaw characterization is done according to rules provided in the FFS codes. The first step of the flaw characterization addresses the interaction of the flaw and the free surface. The second step of the flaw characterization addresses the interaction of the flaw with the adjacent flaws. In the ASME Code Sec. XI, there is a lack on how to treat the interaction of a combined flaw and the free surface of the component. The ASME Code Sec. XI flaw characterization is not clear. Some typical examples of unrealistic flaw assessment rules are depicted in this paper. The paper is used as technical basis for improvement of the ASME Code in order to clarify the treatment of combined flaw in the flaw characterization (IWA-3300, IWB/IWC-3510-1)

Hasegawa, Kunio; Li, Y.; Lacroix, V.*; Mares, V.*

Journal of Pressure Vessel Technology, 142(3), p.031506_1 - 031506_7, 2020/06

Times Cited Count：1 Percentile：46.82(Engineering, Mechanical)Bending stress at plastic collapse for a circumferentially cracked pipe is predicted by limit load criterion provided by the Appendix C of the ASME Code Section XI. The equation of the Appendix C is applicable for pipes with both external and internal surface cracks. On the other hand, the authors have developed a more precise equation. From the comparison of Appendix C equation and the new equation, the plastic collapse stress estimated by the Appendix C equation gives less conservative bending capacity prediction for external cracked pipes with thick wall thickness and large crack angle. This paper discusses the limitation scope to use the limit load criterion of the Appendix C equation.

Hasegawa, Kunio; Li, Y.; Lacroix, V.*; Mares, V.*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 8 Pages, 2019/07

Bending stress at plastic collapse for a circumstantially cracked pipe is predicted by limit load equation provided by the Appendix C of the ASME Code Section XI. The equation of the Appendix C is applicable for pipes with both external and internal surface cracks. On the other hand, authors had developed an equation taking into account the pipe mean radii at non-cracked area and at cracked ligament area. From the comparison of Appendix C equation and the new equation, the plastic collapse stress estimated by the Appendix C equation gives 20 to 30% less conservative for external cracked pipes with small , where is the pipe mean radius and t is the pipe wall thickness. This paper discusses the limitation of the use of for the Appendix C equation.

Hasegawa, Kunio; Usami, Saburo*; Lacroix, V.*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 6 Pages, 2019/07

Fatigue crack growth thresholds are provided by several fitness-for-service (FFS) codes. When evaluating cracked components subjected to cyclic loading, maximum stress intensity factor and/or minimum stress intensity factor are required. However, the definitions of the thresholds under negative stress ratio are not clearly written. In addition, the thresholds are given by constant values under negative . This paper shows that the maximum stress intensity factor converted by the thresholds obtained by experimental data are not constant values under negative . The thresholds for the FFS codes are less conservative. The definition of the thresholds under negative ratio are discussed.

Bouydo, A.*; Dulieu, P.*; Lacroix, V.*; Hasegawa, Kunio; Mares, V.*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 10 Pages, 2019/07

Dulieu, P.*; Lacroix, V.*; Hasegawa, Kunio

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 9 Pages, 2019/07

Hasegawa, Kunio; Li, Y.; Kim, Y.-J.*; Lacroix, V.*; Strnadel, B.*

Journal of Pressure Vessel Technology, 141(3), p.031201_1 - 031201_5, 2019/06

Times Cited Count：0 Percentile：100(Engineering, Mechanical)When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by Fitness-For-Service (FFS) codes. However, specific criteria of the rules are different amongst these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with two circumferential similar flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with two similar flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with two similar flaws are compared with the stresses in compliance with the flaw combination criteria. It is shown that the calculated plastic collapse stresses based on the flaw combination criteria are significantly different from the experimental and analytical stresses.

Mares, V.*; Hasegawa, Kunio; Li, Y.; Lacroix, V.*

Journal of Pressure Vessel Technology, 141(2), p.021203_1 - 021203_6, 2019/04

Times Cited Count：2 Percentile：61.04(Engineering, Mechanical)Appendix C-5320 of ASME BPV Code Section XI provides an equation of bending stress at the plastic collapse, where the equation is applicable for both inner and outer surface cracks. That is, the collapse stresses for pipes with inner and outer surface cracks are the same. Authors considered the separated pipe mean radii at the cracked ligament and at the un-cracked ligament and equations of plastic collapse stresses for both inner and outer cracked pipes were developed. As the results of the calculations, when the crack angle and depth are the same, the collapse stress for outer cracked pipe is lower than that calculated by the Appendix C equation. It is found that the Appendix C equation gives un-conservative plastic collapse stress.

Li, Y.; Azuma, Kisaburo*; Hasegawa, Kunio

International Journal of Pressure Vessels and Piping, 171, p.305 - 310, 2019/03

Times Cited Count：0 Percentile：100(Engineering, Multidisciplinary)Hasegawa, Kunio*; Strnadel, B.*; Li, Y.; Lacroix, V.*

Journal of Pressure Vessel Technology, 140(5), p.051204_1 - 051204_7, 2018/10

Times Cited Count：0 Percentile：100(Engineering, Mechanical)Hasegawa, Kunio; Li, Y.; Mares, V.*; Lacroix, V.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 5 Pages, 2018/07

Appendix C-5320 of ASME Code Section XI provides a formula of bending stress at the plastic collapse, where the formula is applicable for both inner and outer surface flaws. Authors considered the separated pipe mean radii at the flawed ligament and at the un-flawed ligament and formulas of plastic collapse stresses for each inner and outer flawed pipe were obtained. It is found that the collapse stress for inner flawed pipe is slightly higher than that calculated by Appendix C-5320 formula, and the collapse stress for outer flawed pipe is slightly lower than that by Appendix C-5320 formula. The collapse stresses derived from the three formulas are almost the same in most instances. For less common case where the flaw angle and depth are very large for thick wall pipes, the differences among the three collapse stresses become large.

Hasegawa, Kunio; Li, Y.; Kim, Y.-J.*; Lacroix, V.*; Bohumir, S.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 6 Pages, 2018/07

When discrete multiple flaws are close to each other, it is determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service codes. However, specific criteria of the rules are different. On the other hand, plastic collapse bending stresses for stainless steel pipes with circumferential twin flaws were obtained by experiments. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with twin flaws are compared with the stresses in compliance with the combination criteria. It is shown that the calculated plastic collapse stresses based on the combination criteria are significantly different from the experimental and analytical stresses.

Yamaguchi, Yoshihito; Hasegawa, Kunio; Li, Y.

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 6 Pages, 2018/07

Crack closure during fatigue crack growth is an important phenomenon for predicting fatigue crack growth amount. Much experimental data shows that fatigue cracks close at not only negative loads but also positive loads during a constant amplitude loading cycle. The Appendix A-4300 in the ASME Code Section XI provides two equations of fatigue crack growth rates expressed by stress intensity factor range for ferritic steels under negative stress ratio. One is the equation taking into account crack closure and the other does not consider the crack closure. The boundary of crack closure is classified by the magnitude of applied stress intensity factor range. The objective of this paper is to investigate the influence of the magnitude of stress intensity factor range on crack closure. Fatigue tests have been performed on ferritic steel in air environment at room and high temperatures. Crack closures were obtained as a parameter of stress ratio. It was found that crack closure occurs more small applied stress intensity factor range than the definition given by the Appendix A-4300.

Lacroix, V.*; Dulieu, P.*; Blasset, S.*; Tiete, R.*; Li, Y.; Hasegawa, Kunio; Bamford, W.*; Udyawar, A.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

Dulieu, P.*; Lacroix, V.*; Hasegawa, Kunio; Li, Y.; Strnadel, B.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

Nguyen, T.-L.*; Lee, M.-W.*; Hasegawa, Kunio; Kim, Y.-J.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 7 Pages, 2018/07

The effect of longitudinal distance H between non-aligned twin cracks is investigated using finite element damage analysis. It is shown that the failure bending stresses are raised by increasing longitudinal distance H for deep short cracks. On the contrary, shallow long cracks are unaffected by the distance H.

Lee, C. H.*; Nishida, Atsuhiro*; Hasegawa, Takumi*; Nishiate, Hirotaka*; Kunioka, Haruno*; Kawamura, Seiko; Nakamura, Mitsutaka; Nakajima, Kenji; Mizuguchi, Yoshikazu*

Applied Physics Letters, 112(2), p.023903_1 - 023903_4, 2018/01

Times Cited Count：18 Percentile：15.39(Physics, Applied)Low energy phonons in LaOBiSSe are studied using inelastic neutron scattering. Dispersionless flat phonon branches that are mainly associated with a large vibration of Bi atoms are observed at a relatively low energy of = 6 - 6.7 meV. The phonon energy softens upon Se doping owing to its heavier atomic mass than S atom and the expansion of lattice constant. Simultaneously, the lattice thermal conductivity lowered upon Se doping as the same manner of the phonon softening. These suggest that despite the lack of an oversized cage in LaOBiSSe, rattling motions of Bi atoms can scatter phonon like rattling in cage compounds, contributing to enhance the thermoelectric property.