Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishikawa, Akihisa; Koba, Yusuke*; Furuta, Takuya; Chang, W.*; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Hashimoto, Shintaro; Hirai, Yuta*; Sato, Tatsuhiko
Radiological Physics and Technology, 17(2), p.553 - 560, 2024/06
Hashimoto, Shunsuke*; Yamaguchi, Satoshi*; Harada, Masashi*; Nakajima, Kenji; Kikuchi, Tatsuya*; Oishi, Kazuki*
Journal of Colloid and Interface Science, 638, p.475 - 486, 2023/05
Times Cited Count:6 Percentile:68.06(Chemistry, Physical)Recently, it has been reported that anomalous improvement in the thermal conductivity of nanofluid composed of base liquids and dispersed solid nanoparticles, compared to the theoretically predicted value calculated from the particle fraction. Generally, the thermal conductivity values of gases and liquids are dominated by the mean free path of the molecules during translational motion. Herein, we present solid evidence showing the possible contribution of the vibrational behavior of liquid molecules around nanoparticles to increasing these thermal conductivities.
Furuta, Takuya; Koba, Yusuke*; Hashimoto, Shintaro; Chang, W.*; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Ishikawa, Akihisa*; Sato, Tatsuhiko
Physics in Medicine & Biology, 67(14), p.145002_1 - 145002_15, 2022/07
Times Cited Count:6 Percentile:55.81(Engineering, Biomedical)Carbon ion radiotherapy has an advantage over conventional radiotherapy such that its superior dose concentration on the tumor helps to reduce unwanted dose to surrounding normal tissues. Nevertheless, a little dose to normal tissues, which is a potential risk of secondary cancer, is still unavoidable. The Monte Carlo simulation is a good candidate for the tool to assess secondary cancer risk, including the contributions of secondary particles produced by nuclear reactions. We therefore developed a new dose reconstruction system implementing PHITS as the engine. In this system, the PHITS input is automatically created from the DICOM data sets recorded in the treatment planning. The developed system was validated by comparing to experimental dose distribution in water and treatment plan on an anthropomorphic phantom. This system will be used for retrospective studies using the patient data in National Institute for Quantum and Science and Technology.
Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:3 Percentile:20.58(Chemistry, Physical)Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO nanofluids.
Chang, W.*; Koba, Yusuke*; Furuta, Takuya; Yonai, Shunsuke*; Hashimoto, Shintaro; Matsumoto, Shinnosuke*; Sato, Tatsuhiko
Journal of Radiation Research (Internet), 62(5), p.846 - 855, 2021/09
Times Cited Count:3 Percentile:30.17(Biology)With the aim of developing a revaluation tool of treatment plan in carbon-ion radiotherapy using Monte Carlo (MC) simulation, we propose two methods; one is dedicated to identify realistic-tissue materials from a CT image with satisfying the well-calibrated relationship between CT numbers and stopping power ratio (SPR) provided by TPS, and the other is to estimate dose to water considering the particle- and energy-dependent SPR between realistic tissue materials and water. We validated these proposed methods by computing depth dose distribution in homogeneous and heterogeneous phantoms composed of human tissue materials and water irradiated by a 400 MeV/u carbon beam with 8 cm SOBP using a MC simulation code PHITS and comparing with results of conventional treatment planning system (TPS). Our result suggested that use of water as a surrogate of real tissue materials, which is adopted in conventional TPS, is inadequate for dose estimation from secondary particles because their production rates cannot be scaled by SPR of the primary particle in water. We therefore concluded that the proposed methods can play important roles in the reevaluation of the treatment plans in carbon-ion radiotherapy.
Furuta, Takuya; Koba, Yusuke*; Chang, W.*; Hashimoto, Shintaro; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Sato, Tatsuhiko
no journal, ,
Heavy-ion (carbon-ion) therapy has advantages over conventional radiotherapy such as superior dose concentration and better relative biological effectiveness while the secondary particles produced by nuclear reactions between incident carbon ions and matters induce complexity for risk assessment of secondary cancer. For this assessment, precise transport calculation of secondary particles are required so the Monte Carlo transport calculation is desired. We therefore construct a dosimetry system including PHITS as the engine. In this system, the PHITS input is automatically created from the DICOM data sets recorded in the treatment planning. The transport calculation is simulated by PHITS and dose distribution around the tumor but also out-of-filed is computed. This system will be used as retrospective study in National Institute of Radiological Sciences.
Chang, W.*; Koba, Yusuke*; Furuta, Takuya; Yonai, Shunsuke*; Hashimoto, Shintaro; Matsumoto, Shinnosuke*; Sato, Tatsuhiko
no journal, ,
In the treatment planning system (TPS) for radiotherapy, approximate calculation by replacing all materials with water and accounting only the density variation is adopted to reduce the computational cost. On the other hand, conversion from patient CT data to elemental compositions and densities is required to conduct Monte Carlo simulation. Especially for the assessment of secondary cancer risk in carbon therapy, secondary particles produced in the nuclear reaction between incident carbons and human tissues are important so that the difference of the elemental compositions is essential. We have therefore developed a method to convert CT number to human tissues keeping the consistency with the water stopping power table embedded in TPS. We applied this conversion method to 9 different human tissues and confirmed the range of carbon beams are reproduced within 1 mm precision for all the materials.
Ishikawa, Akihisa*; Koba, Yusuke*; Furuta, Takuya; Chang, W.*; Hashimoto, Shintaro; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Sato, Tatsuhiko
no journal, ,
There found to be a relationship between the dose-averaged linear energy transfer LETd and local tumor control in carbon-ion radiotherapy (CIRT). However, only physical dose and biological dose are registered in the past treatment records of CIRT in QST hospital and LETd can not be deduced directly. There is a method to estimate LETd based on RBE-LETd-fitted function but some problems such as non-singularity at the end point of carbon ions are known. On the other hand, we propose a method to reproduce the CIRT by reconstructing the beam transport geometry based on the treatment planning data and conduct Monte Carlo simulation. The LETd can be also computed directly. We therefore compared LETd obtained by Monte Carlo simulation with estimated LETd using the treatment planning data. We found that underestimation around the end point of carbon ions but the influence was local and thus the LETd estimates are valid for the purpose computing in organ scale.
Fujino, Shunsuke; Hashimoto, Kazuyuki; Saeki, Hideya*; Kawauchi, Yukimasa*; Kawabata, Masako*; Chiba, Yusuke
no journal, ,
Lutetium-177 (Lu-177)is a medical radioisotope used in approved radiopharmaceutical "Lutathera" to treat neuroendocrine tumours. And it is one of the promising radionuclides for new therapeutic radiopharmaceuticals. However, Lu-177 is dependent on imports from overseas, and there are concerns that transportation problems etc. may affect domestic distribution and development of new pharmaceuticals. In order to confirm whether JAEA can produce a portion of the Lu-177 for research, we conducted a production test of Lu-177 using JRR-3.