Refine your search:     
Report No.
 - 
Search Results: Records 1-18 displayed on this page of 18
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High-sensitive XANES analysis at Ce L$$_{2}$$-edge for Ce in bauxites using transition-edge sensors; Implications for Ti-rich geological samples

Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.

Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02

 Times Cited Count:4 Percentile:31.9(Chemistry, Analytical)

no abstracts in English

Journal Articles

Recent improvements of the Particle and Heavy Ion Transport code System; PHITS version 3.33

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

 Times Cited Count:8 Percentile:98.08(Nuclear Science & Technology)

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.

Journal Articles

Differential cross sections and photon beam asymmetries of $$eta$$ photoproduction on the proton at $$E_gamma$$ = 1.3-2.4 GeV

Hashimoto, Toshikazu*; Tsuchikawa, Yusuke; LEPS BGOegg Collaboration*; 58 of others*

Physical Review C, 106(3), p.035201_1 - 035201_15, 2022/09

 Times Cited Count:3 Percentile:66.85(Physics, Nuclear)

Journal Articles

Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy

Furuta, Takuya; Koba, Yusuke*; Hashimoto, Shintaro; Chang, W.*; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Ishikawa, Akihisa*; Sato, Tatsuhiko

Physics in Medicine & Biology, 67(14), p.145002_1 - 145002_15, 2022/07

 Times Cited Count:3 Percentile:47.19(Engineering, Biomedical)

Carbon ion radiotherapy has an advantage over conventional radiotherapy such that its superior dose concentration on the tumor helps to reduce unwanted dose to surrounding normal tissues. Nevertheless, a little dose to normal tissues, which is a potential risk of secondary cancer, is still unavoidable. The Monte Carlo simulation is a good candidate for the tool to assess secondary cancer risk, including the contributions of secondary particles produced by nuclear reactions. We therefore developed a new dose reconstruction system implementing PHITS as the engine. In this system, the PHITS input is automatically created from the DICOM data sets recorded in the treatment planning. The developed system was validated by comparing to experimental dose distribution in water and treatment plan on an anthropomorphic phantom. This system will be used for retrospective studies using the patient data in National Institute for Quantum and Science and Technology.

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:1 Percentile:22.72(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

Journal Articles

Technical Note: Validation of a material assignment method for a retrospective study of carbon-ion radiotherapy using Monte Carlo simulation

Chang, W.*; Koba, Yusuke*; Furuta, Takuya; Yonai, Shunsuke*; Hashimoto, Shintaro; Matsumoto, Shinnosuke*; Sato, Tatsuhiko

Journal of Radiation Research (Internet), 62(5), p.846 - 855, 2021/09

 Times Cited Count:3 Percentile:26.61(Biology)

With the aim of developing a revaluation tool of treatment plan in carbon-ion radiotherapy using Monte Carlo (MC) simulation, we propose two methods; one is dedicated to identify realistic-tissue materials from a CT image with satisfying the well-calibrated relationship between CT numbers and stopping power ratio (SPR) provided by TPS, and the other is to estimate dose to water considering the particle- and energy-dependent SPR between realistic tissue materials and water. We validated these proposed methods by computing depth dose distribution in homogeneous and heterogeneous phantoms composed of human tissue materials and water irradiated by a 400 MeV/u carbon beam with 8 cm SOBP using a MC simulation code PHITS and comparing with results of conventional treatment planning system (TPS). Our result suggested that use of water as a surrogate of real tissue materials, which is adopted in conventional TPS, is inadequate for dose estimation from secondary particles because their production rates cannot be scaled by SPR of the primary particle in water. We therefore concluded that the proposed methods can play important roles in the reevaluation of the treatment plans in carbon-ion radiotherapy.

JAEA Reports

Investigation and consideration on evaluation of radiation doses to residents in the case of a nuclear emergency

Hashimoto, Makoto; Kinase, Sakae; Munakata, Masahiro; Murayama, Takashi; Takahashi, Masa; Takada, Chie; Okamoto, Akiko; Hayakawa, Tsuyoshi; Sukegawa, Masato; Kume, Nobuhide*; et al.

JAEA-Review 2020-071, 53 Pages, 2021/03

JAEA-Review-2020-071.pdf:2.72MB

In the case of a nuclear accident or a radiological emergency, the Japan Atomic Energy Agency (JAEA), as a designated public corporation assigned in the Disaster Countermeasures Basic Act and the Armed Attack Situation Response Law, undertakes technical supports to the national government and local governments. The JAEA is requested to support to evaluate radiation doses to residents in a nuclear emergency, which is specified in the Basic Disaster Management Plan and the Nuclear Emergency Response Manual. For the dose evaluation, however, its strategy, target, method, structure and so on have not been determined either specifically or in detail. This report describes the results of investigation and consideration discussed in the "Working Group for Radiation Dose Evaluation at a Nuclear Emergency" established within the Nuclear Emergency Assistance and Training Center to discuss technical supports for radiation dose evaluation to residents in the case of a nuclear emergency, and aims at contributing to specific and detailed discussion and activities in the future for the national government and local governments, also within the JAEA.

Journal Articles

$$omega N$$ scattering length from $$omega$$ photoproduction on the proton near the reaction threshold

Ishikawa, Takatsugu*; Fujimura, Hisako*; Fukasawa, Hiroshi*; Hashimoto, Ryo*; He, Q.*; Honda, Yuki*; Hosaka, Atsushi; Iwata, Takahiro*; Kaida, Shun*; Kasagi, Jirota*; et al.

Physical Review C, 101(5), p.052201_1 - 052201_6, 2020/05

 Times Cited Count:4 Percentile:45.12(Physics, Nuclear)

Journal Articles

Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets

Ramos, R.*; Hioki, Tomosato*; Hashimoto, Yusuke*; Kikkawa, Takashi*; Frey, P.*; Kreil, A. J. E.*; Vasyuchka, V. I.*; Serga, A. A.*; Hillebrands, B.*; Saito, Eiji

Nature Communications (Internet), 10, p.5162_1 - 5162_8, 2019/11

 Times Cited Count:24 Percentile:76.88(Multidisciplinary Sciences)

Journal Articles

Time-resolved imaging of magnetoelastic waves by the cotton-mouton effect

Hioki, Tomosato*; Hashimoto, Yusuke*; Johansen, T. H.*; Saito, Eiji

Physical Review Applied (Internet), 11(6), p.061007_1 - 061007_5, 2019/06

 Times Cited Count:7 Percentile:37.59(Physics, Applied)

Journal Articles

Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility

Li, T.*; Garg, U.*; Liu, Y.*; Marks, R.*; Nayak, B. K.*; Madhusudhana Rao, P. V.*; Fujiwara, Mamoru*; Hashimoto, Hisanobu*; Nakanishi, Kosuke*; Okumura, Shun*; et al.

Physical Review C, 81(3), p.034309_1 - 034309_11, 2010/03

 Times Cited Count:107 Percentile:97.48(Physics, Nuclear)

Oral presentation

Development of a Monte Carlo dosimetry system for retrospective study of heavay-ion therapy

Furuta, Takuya; Koba, Yusuke*; Chang, W.*; Hashimoto, Shintaro; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Sato, Tatsuhiko

no journal, , 

Heavy-ion (carbon-ion) therapy has advantages over conventional radiotherapy such as superior dose concentration and better relative biological effectiveness while the secondary particles produced by nuclear reactions between incident carbon ions and matters induce complexity for risk assessment of secondary cancer. For this assessment, precise transport calculation of secondary particles are required so the Monte Carlo transport calculation is desired. We therefore construct a dosimetry system including PHITS as the engine. In this system, the PHITS input is automatically created from the DICOM data sets recorded in the treatment planning. The transport calculation is simulated by PHITS and dose distribution around the tumor but also out-of-filed is computed. This system will be used as retrospective study in National Institute of Radiological Sciences.

Oral presentation

Development of a CT-number parameterization method and validation for Monte Carlo simulation of carbon-ion radiotherapy; A Preliminary study

Chang, W.*; Koba, Yusuke*; Furuta, Takuya; Yonai, Shunsuke*; Hashimoto, Shintaro; Matsumoto, Shinnosuke*; Sato, Tatsuhiko

no journal, , 

In the treatment planning system (TPS) for radiotherapy, approximate calculation by replacing all materials with water and accounting only the density variation is adopted to reduce the computational cost. On the other hand, conversion from patient CT data to elemental compositions and densities is required to conduct Monte Carlo simulation. Especially for the assessment of secondary cancer risk in carbon therapy, secondary particles produced in the nuclear reaction between incident carbons and human tissues are important so that the difference of the elemental compositions is essential. We have therefore developed a method to convert CT number to human tissues keeping the consistency with the water stopping power table embedded in TPS. We applied this conversion method to 9 different human tissues and confirmed the range of carbon beams are reproduced within 1 mm precision for all the materials.

Oral presentation

Particle and Heavy Ion Transport code System: PHITS

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Tsai, P.-E.; Matsuda, Norihiro; Matsuya, Yusuke; et al.

no journal, , 

WPHITS is a general purpose Monte Carlo particle transport simulation code of which development is led by the Japan Atomic Energy Agency (JAEA). It can deal with the transport of all types of particle species over wide energy ranges, using several nuclear reaction models and nuclear data libraries. PHITS has been used for various research fields such as accelerator design, radiotherapy, radiation protection, particle and cosmic-ray physics, and environmental sciences. PHITS can be installed and executed on Windows, Mac, and Linux, and both MPI and OpenMP parallel versions are available. The details of the features of PHITS will be presented at the meeting.

Oral presentation

Recent development of the PHITS code

Hashimoto, Shintaro; Sato, Tatsuhiko; Iwamoto, Yosuke; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

no journal, , 

PHITS is a general-purpose radiation transport simulation code that has been developed mainly by JAEA in cooperation with domestic and foreign research institutes. PHITS can simulate various radiation behaviors in all kinds of materials, and has been used by more than 7,000 researchers and engineers in a wide range of fields, including science, engineering, and medicine. We released the latest version, PHITS 3.27, in March 2022. This version includes several valuable improvements such as ITSART, a track-structure mode for arbitrary materials, and availability of nuclear data libraries for deuterons, alpha particles, and photons. In this presentation, we will introduce the new improvements and their features.

Oral presentation

Recent updates and shielding benchmark of PHITS

Ogawa, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Sato, Tatsuhiko; Matsuda, Norihiro; Kunieda, Satoshi; $c{C}$elik, Y.*; Furutachi, Naoya*; Niita, Koji*; Furuta, Takuya; et al.

no journal, , 

PHITS is a general-purpose radiation transport simulation code that has been developed mainly by JAEA in cooperation with domestic and foreign research institutes. We released the latest version, PHITS 3.27, in March 2022. Since SATIF-14 held in 3 years ago, following updates were implemented (1)Extension of the cross section data reading module, (2)Modernization of burn-up calculation code DCHAIN, (3)Functionality to calculate the dependence of the result on the input parameters, (4)Interactive 3D geometry viewer,PHIG-3D, (5)Cosmic ray source function, (6)Track-structure calculation models, which calculate the atomic-scale reactions of charged particles on event-by-event basis, for electrons, positions, and heavy ions, (7)GUI-version RT-PHITS development, (8)random number generation by Xor-shift64 algorithm, (9)User-defined stopping power reading module, (10)EXFOR data reading module, (11)Photon-induced mu-mu pair production model. In addition, a bench, ark study conducted by Iwamoto et al, is also presented to explain the importance of the new cross section reading module.

Oral presentation

Discrimination of artificial radionuclides in a radioactive aerosol monitor; Correlation method of $$^{214}$$Po-gross alpha counts

Yamada, Ryohei; Hashimoto, Hiroki*; Tamakuma, Yuki*; Omori, Yasutaka*; Hosoda, Masahiro*; Akata, Naofumi*; Uchiyama, Rei; Nakada, Akira; Endo, Michitaka*; Imajo, Yusuke*; et al.

no journal, , 

no abstracts in English

Oral presentation

Comparison of physical dose and dose-averaged linear energy transfer between treatment planning system and Monte Carlo simulation in carbon-ion radiotherapy

Ishikawa, Akihisa*; Koba, Yusuke*; Furuta, Takuya; Chang, W.*; Hashimoto, Shintaro; Yonai, Shunsuke*; Matsumoto, Shinnosuke*; Sato, Tatsuhiko

no journal, , 

There found to be a relationship between the dose-averaged linear energy transfer LETd and local tumor control in carbon-ion radiotherapy (CIRT). However, only physical dose and biological dose are registered in the past treatment records of CIRT in QST hospital and LETd can not be deduced directly. There is a method to estimate LETd based on RBE-LETd-fitted function but some problems such as non-singularity at the end point of carbon ions are known. On the other hand, we propose a method to reproduce the CIRT by reconstructing the beam transport geometry based on the treatment planning data and conduct Monte Carlo simulation. The LETd can be also computed directly. We therefore compared LETd obtained by Monte Carlo simulation with estimated LETd using the treatment planning data. We found that underestimation around the end point of carbon ions but the influence was local and thus the LETd estimates are valid for the purpose computing in organ scale.

18 (Records 1-18 displayed on this page)
  • 1