Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 95

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of excavation damaged zone by optical measurement in Horonobe Underground Research Laboratory

Hata, Koji*; Nyunoya, Sumio*; Aoyagi, Kazuhei; Miyara, Nobukatsu

Doboku Gakkai Rombunshu, F1 (Tonneru Kogaku) (Internet), 77(2), p.I_29 - I_43, 2021/00

no abstracts in English

JAEA Reports

Long term monitoring and evaluation of the excavation damaged zone induced around the wall of the shaft applying optical fiber sensor (Cooperative research)

Hata, Koji*; Niunoya, Sumio*; Uyama, Masao*; Nakaoka, Kenichi*; Fukaya, Masaaki*; Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

JAEA-Research 2020-010, 142 Pages, 2020/11

JAEA-Research-2020-010.pdf:13.74MB
JAEA-Research-2020-010-appendix(DVD-ROM).zip:149.9MB

In the geological disposal study of high-level radioactive waste, it is suggested that the excavation damaged zone (EDZ) which is created around a tunnel by the excavation will be possible to be one of the critical path of radionuclides. Especially, the progress of cracks in and around the EDZ with time affects the safety assessment of geological disposal and it is important to understand the hydraulic change due to the progress of cracks in and around EDZ. In this collaborative research, monitoring tools made by Obayashi Corporation were installed at a total of 9 locations in the three boreholes near the depth of 370 m of East Shaft at the Horonobe Underground Research Laboratory constructed in the Neogene sedimentary rock. The monitoring tool consists of one set of "optical AE sensor" for measuring of the mechanical rock mass behavior and "optical pore water pressure sensor and optical temperature sensor" for measuring of groundwater behavior. This tool was made for the purpose of selecting and analyzing of AE signal waveforms due to rock fracture during and after excavation of the target deep shaft. As a result of analyzing various measurement data including AE signal waveforms, it is able to understand the information on short-term or long-term progress of cracks in and around EDZ during and after excavation in the deep shaft. In the future, it will be possible to carry out a study that contributes to the long-term stability evaluation of EDZ in sedimentary rocks in the deep part of the Horonobe Underground Research Laboratory by evaluation based on these analytical data.

Journal Articles

Adefining the mechanism of the gas-bubble AE characteristics by two-phase flow test

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Tanai, Kenji

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.92 - 97, 2020/01

Since underground water at the Horonobe Underground Research Laboratory site includes the dissolved gas, it is important to understand the quantitative behavior of AE signal waveform clearly and to develop the criteria of sorting technique. In this report, we tried to perform two types of laboratory tests (Small pipe test and Flat-plate test) in order to obtain detail data of AE signal wave form under two-phase flow. As the result, we could understand that there exists the relationship between the pressure breathing and AE generation, and that the diameter of pipe did not affect the AE behavior.

Journal Articles

Empirical equations of crack growth rates based on data fitting of neutron irradiated stainless steel under high temperature water simulating boiling water reactor core conditions

Kasahara, Shigeki; Chimi, Yasuhiro; Hata, Kuniki; Fukuya, Koji*; Fujii, Katsuhiko*

Proceedings of 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors (Internet), p.1345 - 1355, 2019/08

This paper describes empirical equation development of crack growth rates (CGR) in consideration of IASCC of neutron irradiated stainless steel to contribute to structural integrity assessment of BWR reactor internals. Empirical equations of CGR (da/dt) were developed based on a formula of da/dt = M$$times$$K$$^{n}$$, assuming that "M" and "n" tend to be saturated with increasing neutron fluence. To obtain the empirical equations for normal water chemistry (NWC) and hydrogen water chemistry (HWC) of BWR, a data fitting with least square method was applied to the datasets consisting of F, K and CGR from post irradiation examinations of neutron irradiated stainless steel under simulated NWC and HWC conditions from open literature. As a result, calculated results by the equation for NWC showed good agreement with measured CGR data, meanwhile those for HWC did not. The above difference was seemed to be attributed that CGR data obtained under HWC conditions were scattered extensively.

Journal Articles

Empirical equations for tensile properties and stress-strain curves of neutron irradiated stainless steels in LWR conditions

Fukuya, Koji*; Fujii, Katsuhiko*; Chimi, Yasuhiro; Hata, Kuniki

Proceedings of 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors (Internet), p.523 - 531, 2019/08

For structural integrity assessment on reactor internals of light water reactors, empirical equations of tensile properties as a function of neutron dose, and trend curves of stress-strain relations of neutron-irradiated austenitic stainless steels was proposed by fitting to recently developed database. The data in the database were obtained from reports of national projects in Japan and open literature, which was summarized in the form of data sheets. The empirical equations for tensile properties were formulated by using a saturation-type formulae. The equations were for CW 316 and SA 304/316 stainless steels in the temperature range of 280-350$$^{circ}$$C and the dose range up to 80 dpa. Stress-strain relation curves were reproduced based on the Swift model. Obtained calculated results by the empirical equations and stress-strain relations were reasonably well fitted to experimental data. The effects of composition and cold-working, etc. on tensile properties were discussed.

Journal Articles

Spectroscopic measurements of L X-rays with a TES microcalorimeter for a non-destructive assay of transuranium elements

Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke*; Sugimoto, Tetsuya*; Kiguchi, Yu*; Iyomoto, Naoko*; Mitsuda, Kazuhisa*

Journal of Low Temperature Physics, 193(3-4), p.314 - 320, 2018/11

 Times Cited Count:0 Percentile:0(Physics, Applied)

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

Study on analysis methodology of AE signal wave at great depth excavation

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Wakasugi, Keiichiro

Dai-45-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.226 - 231, 2018/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the first analytical results, it was too hard to discriminate the uncleared AE wave by using the resonant characteristic. Thus, at this time, we tried to reanalysis by using the half width of spectrum, we could discriminate it correctly as AE from the breaking of rock.

Journal Articles

Radiolysis of mixed solutions of Cl$$^{-}$$ and Br$$^{-}$$ and its effect on corrosion of a low-alloy steel

Hata, Kuniki; Inoue, Hiroyuki*; Kojima, Takao*; Kasahara, Shigeki; Hanawa, Satoshi; Ueno, Fumiyoshi; Tsukada, Takashi; Iwase, Akihiro*

Proceedings of Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2017 (AWC 2017) (USB Flash Drive), p.304 - 314, 2017/09

A model simulation of $$gamma$$ radiolysis of mixed solutions of NaCl and NaBr was carried out. The simulation result agreed well with the experimental result, and Br$$^{-}$$ played an important role in determining the amounts of products from water radiolysis. The simulation result also showed that, in highly pure NaCl solutions, the steady-state concentration of a radolytic product, H$$_{2}$$O$$_{2}$$, was mainly controlled by three reactions (Cl$$^{-}$$ + $$^{.}$$OH $$rightarrow$$ ClOH$$^{.-}$$, ClOH$$^{.-}$$ $$rightarrow$$ Cl$$^{-}$$ + $$^{.}$$OH, and ClOH$$^{.-}$$ + H$$^{+}$$ $$rightarrow$$ Cl$$^{.}$$ + H$$_{2}$$O), which indicated that accurate evaluation of the rate constants of these reactions was very important in improving the radiolysis simulation of solutions containing Cl$$^{-}$$. An immersion test using a low-alloy steel, SQV2A, in the mixed solutions was also carried out under irradiation. The corrosion rate increased or decreased depending on the pH or the concentrations of the halide ions in a similar way to the change in concentration of H$$_{2}$$O$$_{2}$$ produced from water radiolysis, which is affected by the presence of Cl$$^{-}$$ and Br$$^{-}$$. However, at high pH values ($$>$$12), the corrosion rate was almost zero even though the concentration of H$$_{2}$$O$$_{2}$$ was high. This could be attributed to enhancement of the passivity of test specimens at higher pH values.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Takeda, Nobufumi*; Miura, Norihiko*; Ishida, Tomoko*; Hata, Koji*; Uyama, Masao*; Sato, Shin*; Okuma, Fumiko*; Hayagane, Sayaka*; Matsui, Hiroya; et al.

JAEA-Technology 2016-035, 153 Pages, 2017/02

JAEA-Technology-2016-035.pdf:37.6MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project in FY2016, detailed investigations of the ( mechanical )behaviors of the plug and the rock mass around the reflood tunnel through ongoing reflood test were performed as part of (5) development of technologies for restoration and/or reduction of the excavation damage. As the result, particularly for the temperature change of the plug, its analytical results agree fairly well agree with the measurement ones. This means cracks induced by temperature stress can be prevented by the cooling countermeasure works reviewed in designing stage. In addition, for the behaviors of the plug and the bedrock boundary after reflooding the reflood tunnel, comparison between the results obtained by coupled hydro-mechanical analysis (stress-fluid coupled analysis ) with the ones by several measurements, concluded that the model established based on the analysis results is generally appropriated.

Journal Articles

Long-term evaluation of excavation damaged zone by optical measurement in Horonobe Underground Research Laboratory

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei

Dai-14-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), 6 Pages, 2017/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the measurement results, the extent of an excavation damaged zone was 1.5m within the shaft wall. After the excavation, it was observed that the unsaturated zone of the groundwater was spread more than 1.5m within the shaft wall.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2014); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Nobufumi*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Hara, Akira*; et al.

JAEA-Technology 2016-002, 195 Pages, 2016/03

JAEA-Technology-2016-002.pdf:46.3MB
JAEA-Technology-2016-002-appendix(CD-ROM).zip:16.11MB

The researches on examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/on reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As the result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained.

Journal Articles

Hydrogen peroxide production by $$gamma$$ radiolysis of sodium chloride solutions containing a small amount of bromide ion

Hata, Kuniki; Inoue, Hiroyuki*; Kojima, Takao*; Iwase, Akihiro*; Kasahara, Shigeki; Hanawa, Satoshi; Ueno, Fumiyoshi; Tsukada, Takashi

Nuclear Technology, 193(3), p.434 - 443, 2016/03

 Times Cited Count:9 Percentile:71.87(Nuclear Science & Technology)

Journal Articles

Evaluation of EDZ (Excavated Damage Zone) by multi-optical measurement probe in Horonobe Underground Research Center

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei; Fujita, Tomo

Dai-44-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.319 - 324, 2016/01

Long-term monitoring and EDZ (Excavated Damage Zone) evaluation is carried out by this multi-optical measurement probe in the depth of 350m vertical shaft of Horonobe Underground Research Center project of the Japan Atomic Energy Agency. We have developed a multi-optical measurement probe incorporating an optical AE sensor, an optical water pressure sensor and an optical temperature sensor. Result of the measurement of AE, water pressure and temperature, it was made clear the influence of the shaft excavation. And from the source location analysis, it was found EDZ was less than 1.5m from shaft wall.

Journal Articles

JT-60SA superconducting magnet system

Koide, Yoshihiko; Yoshida, Kiyoshi; Wanner, M.*; Barabaschi, P.*; Cucchiaro, A.*; Davis, S.*; Decool, P.*; Di Pietro, E.*; Disset, G.*; Genini, L.*; et al.

Nuclear Fusion, 55(8), p.086001_1 - 086001_7, 2015/08

 Times Cited Count:25 Percentile:85.34(Physics, Fluids & Plasmas)

The most distinctive feature of the superconducting magnet system for JT-60SA is the optimized coil structure in terms of the space utilization as well as the highly accurate coil manufacturing, thus meeting the requirements for the steady-state tokamak research: A conceptually new outer inter-coil structure separated from the casing is introduced to the toroidal field coils to realize their slender shape, allowing large-bore diagnostic ports for detailed plasma measurements. A method to minimize the manufacturing error of the equilibrium-field coils has been established, aiming at the precise plasma shape/position control. A compact butt-joint has been successfully developed for the Central Solenoid, which allows an optimized utilization of the limited space for the Central Solenoid to extend the duration of the plasma pulse.

Journal Articles

Progress and status of the gyrotron development for the JT-60SA ECH/CD system

Kobayashi, Takayuki; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Ikeda, Ryosuke; Oda, Yasuhisa; Wada, Kenji; Hinata, Jun; Yokokura, Kenji; Hoshino, Katsumichi; et al.

Proceedings of 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015) (USB Flash Drive), 3 Pages, 2015/08

A gyrotron for electron cyclotron heating and current drive (ECH/CD) has been developed for JT-60SA (Super-Advanced). In high-power, long-pulse operations, oscillations of 1 MW/100 s have been demonstrated at both 110 GHz and 138 GHz, for the first time. These results fully satisfied the requirements for JT-60SA. Moreover, it was experimentally shown that the higher power operation at each frequency is expected to be acceptable for this gyrotron from the viewpoint of heat load at the cavity resonator, collector, and stray radiation absorbers. An oscillation at 82 GHz, which is an additional frequency, has been demonstrated up to 2 s at the output power of 0.4 MW, so far. High power experiments toward higher power of 1.5 MW (110/138 GHz) and 1 MW (82 GHz) are ongoing.

Journal Articles

Development of Terminal Joint and Lead Extension for JT-60SA Central Solenoid

Murakami, Haruyuki; Kizu, Kaname; Ichige, Toshikatsu; Furukawa, Masato; Natsume, Kyohei; Tsuchiya, Katsuhiko; Kamiya, Koji; Koide, Yoshihiko; Yoshida, Kiyoshi; Obana, Tetsuhiro*; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4201305_1 - 4201305_5, 2015/06

 Times Cited Count:6 Percentile:39.96(Engineering, Electrical & Electronic)

JT-60U magnet system will be upgraded to the superconducting coils in the JT-60SA programme of the Broader Approach activities. Terminal joint of Central Solenoid (CS) is wrap type Nb$$_{3}$$Sn-NbTi joint used for connecting CS (Nb$$_{3}$$Sn) and current feeder (NbTi). The terminal joints are placed at the top and the bottom of the CS systems. CS modules located at middle position of CS system need the lead extension from the modules to the terminal joint. The joint resistance measurement of terminal joint was performed in the test facility of National Institute for Fusion Science. The joint resistance was evaluated by the operating current and the voltage between both ends of the terminal joint part. Test results met the requirement of JT-60SA magnet system. The structural analysis of the lead extension and its support structure was conducted to confirm the support design. In this paper, the results of resistance test of joint and the structural analysis results of lead extension are reported.

Journal Articles

Gyrotron development for high-power, long-pulse electron cyclotron heating and current drive at two frequencies in JT-60SA and its extension toward operation at three frequencies

Kobayashi, Takayuki; Moriyama, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; et al.

Nuclear Fusion, 55(6), p.063008_1 - 063008_8, 2015/06

 Times Cited Count:17 Percentile:74.11(Physics, Fluids & Plasmas)

A gyrotron enabling high-power, long-pulse oscillations at both 110 GHz and 138 GHz has been developed for electron cyclotron heating (ECH) and current drive (CD) in JT-60SA. Oscillations of 1 MW for 100 s have been demonstrated at both frequencies, for the first time as a gyrotron operating at two frequencies. The optimization of the anode voltage, or the electron pitch factor, using a triode gun was a key to obtain high power and high efficiency at two frequencies. It was also confirmed that the internal losses in the gyrotron were sufficiently low for expected long pulse operation at the higher power level of $$sim$$1.5 MW. Another important result is that an oscillation at 82 GHz, which enables to use fundamental harmonic waves in JT-60SA while the other two frequencies are used as second harmonics waves, was demonstrated up to 0.4 MW for 2 s. These results of the gyrotron development significantly contribute to enhancing operation regime of the ECH/CD system in JT-60SA.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2013); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Yoshinori*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Toda, Akiko*; et al.

JAEA-Technology 2014-040, 199 Pages, 2015/03

JAEA-Technology-2014-040.pdf:37.2MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies for restoration and/or reduction of the excavation damage. The researches on engineering technology such as verification of the initial design were being conducted by using data measured during construction as a part of the second phase of the MIU plan. Examination about the plug for reflood test in the GL-500m Access/Research Gallery-North as part of the development of technologies for restoration and/or reduction of excavation damage were carried out. Specifically, Literature survey was carried out about the plug, based on the result of literature survey, examination of the design condition, design of the plug and rock stability using numerical simulation, selection of materials for major parts, and grouting for water inflow from between rock and plug, were carried out in this study.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory; FY2012 (Contract research)

Fukaya, Masaaki*; Noda, Masaru*; Hata, Koji*; Takeda, Yoshinori*; Akiyoshi, Kenji*; Ishizeki, Yoshikazu*; Kaneda, Tsutomu*; Sato, Shin*; Shibata, Chihoko*; Ueda, Tadashi*; et al.

JAEA-Technology 2014-019, 495 Pages, 2014/08

JAEA-Technology-2014-019.pdf:82.23MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) plan consists of (1) research on engineering technology deep underground, and (2) research on engineering technology as a basis of geological disposal. The former research is mainly aimed in this study, which is categorized in (a) development of design and construction planning technologies, (b) development of construction technologies, (c) development of countermeasure technologies, and (d) development of technologies for security. In this study, the researches on engineering technology are being conducted in these four categories by using data measured during construction as a part of the second phase of the MIU plan.

95 (Records 1-20 displayed on this page)