Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 159

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Slightly hydrogen-ordered state of ice IV evidenced by ${it in situ}$ neutron diffraction

Kobayashi, Hiroki*; Komatsu, Kazuki*; Ito, Hayate*; Machida, Shinichi*; Hattori, Takanori; Kagi, Hiroyuki*

Journal of Physical Chemistry Letters (Internet), 14(47), p.10664 - 10669, 2023/11

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Ice IV is a metastable high-pressure phase of ice in which the water molecules exhibit orientational disorder. Although orientational ordering is commonly observed for other ice phases, it has not been reported for ice IV. We conducted ${it in situ}$ powder neutron diffraction experiments for DCl-doped D$$_{2}$$O ice IV to investigate hydrogen ordering in ice IV. We found abrupt changes in the temperature derivative of unit cell volume, dV/dT, at about 120 K, and revealed their slightly ordered structure at low temperatures based on the Rietveld method. The occupancy of the D1 site deviates from 0.5; it increased when samples were cooled at higher pressures and reached 0.282(5) at 2.38 GPa, 58 K. Our results evidence the presence of a low-symmetry hydrogen-ordered state corresponding to ice IV. It seems, however, difficult to experimentally access the completely ordered phase corresponding to ice IV by slow cooling at high pressure.

Journal Articles

The Hydrogen-bond network in sodium chloride tridecahydrate; Analogy with ice VI

Yamashita, Keishiro*; Nakayama, Kazuya*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*

Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 79(5), p.414 - 426, 2023/10

 Times Cited Count:0 Percentile:0.02(Chemistry, Multidisciplinary)

The structure of a recently-found hyperhydrated form of sodium chloride, NaCl$$cdot$$ 13H(D)$$_{2}$$O, has been determined by ${it in situ}$ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. Here, we present an example for further insights into a hydrogen-bond network containing ionic species.

Journal Articles

Hydrogen occupation and hydrogen-induced volume expansion in Fe$$_{0.9}$$Ni$$_{0.1}$$D$$_x$$ at high $$P-T$$ conditions

Shito, Chikara*; Kagi, Hiroyuki*; Kakizawa, Sho*; Aoki, Katsutoshi*; Komatsu, Kazuki*; Iizuka, Riko*; Abe, Jun*; Saito, Hiroyuki*; Sano, Asami; Hattori, Takanori

American Mineralogist, 108(4), p.659 - 666, 2023/04

 Times Cited Count:1 Percentile:64.83(Geochemistry & Geophysics)

The phase relation and crystal structure of Fe$$_{0.9}$$Ni$$_{0.1}$$H$$_x$$ (D$$_x$$) at high pressures and temperatures up to 12 GPa and 1000 K were clarified by in-situ X-ray and neutron diffraction measurements. Under $$P-T$$ conditions of the present study, no deuterium atoms occupied tetragonal ($$T$$) sites of face-centered cubic (fcc) Fe$$_{0.9}$$Ni$$_{0.1}$$D$$_x$$ unlike fcc FeH$$_x$$(D$$_x$$). The deuterium-induced volume expansion per deuterium $$v_mathrm{D}$$ was determined as 2.45(4) $AA$^3$$ and 3.31(6) $AA$^3$$ for fcc and hcp phases, respectively, which were significantly larger than the corresponding values for FeD$$_x$$. The $$v_mathrm{D}$$ value slightly increased with increasing temperature. This study suggests that only 10% of nickel in iron drastically changes the behaviors of hydrogen in metal. Assuming that $$v_mathrm{D}$$ is constant regardless of pressure, the maximum hydrogen content in the Earth's inner core is estimated to be one to two times the amount of hydrogen in the oceans.

Journal Articles

Atomic distribution and local structure in ice VII from in situ neutron diffraction

Yamashita, Keishiro*; Komatsu, Kazuki*; Klotz, S.*; Fabelo, O.*; Fern$'a$ndez-D$'i$az, M. T.*; Abe, Jun*; Machida, Shinichi*; Hattori, Takanori; Irifune, Tetsuo*; Shimmei, Toru*; et al.

Proceedings of the National Academy of Sciences of the United States of America, 119(40), p.e2208717119_1 - e2208717119_6, 2022/10

 Times Cited Count:2 Percentile:22.35(Multidisciplinary Sciences)

Here we present the first elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K from both single-crystal and powder neutron diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly-accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these noble findings are related to the proton dynamics which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

Journal Articles

Behavior of light elements in iron-silicate-water-sulfur system during early Earth's evolution

Iizuka, Riko*; Goto, Hirotada*; Shito, Chikara*; Fukuyama, Ko*; Mori, Yuichiro*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Kagi, Hiroyuki*

Scientific Reports (Internet), 11(1), p.12632_1 - 12632_10, 2021/06

 Times Cited Count:3 Percentile:32.31(Multidisciplinary Sciences)

The Earth's core consist of Fe-Ni alloy with some light elements (H, C, O, Si, S etc.). Hydrogen (H) is the most abundant element in the universe and one of the promising candidates. In this study, we have investigated the effects of sulfur(S) on hydrogenation of iron-hydrous silicate system containing saturated water in the ideal composition of the primitive Earth. We observed a series of phase transitions of Fe, dehydration of the hydrous mineral, and formation of olivine and enstatite with increasing temperature. The FeS formed as the coexisting phase of Fe under high-pressure and temperature condition, but its unit cell volume did not increase, suggesting that FeS is hardly hydrogenated. Recovered samples exhibited that H and S can be incorporated into solid Fe, which lowers the melting temperature as Fe(H$$_{x}$$)-FeS system. No detection of other light elements (C, O, Si) in solid Fe suggests that they dissolve into molten iron hydride and/or FeS in the later process of Earth's core-mantle differentiation.

Journal Articles

High-pressure and high-temperature neutron-diffraction experiments using Kawai-type multi-anvil assemblies

Sano, Asami; Kakizawa, Sho*; Shito, Chikara*; Hattori, Takanori; Machida, Shinichi*; Abe, Jun*; Funakoshi, Kenichi*; Kagi, Hiroyuki*

High Pressure Research, 41(1), p.65 - 74, 2021/03

 Times Cited Count:2 Percentile:30.35(Physics, Multidisciplinary)

We applied Kawai-type multi-anvil assemblies (MA6-8) for time-of-flight neutron-diffraction experiments to achieve high pressures and high temperatures simultaneously. To achieve sufficient signal intensities, the angular access to the sample was enlarged using slits and tapers on the first-stage anvils. Using SiC-binder sintered diamond for the second-stage anvils that transmits neutrons, sufficient signal intensities were achieved at a high-pressure of $$sim$$23.1 GPa. A high-temperature experiment was also conducted at 16.2 GPa and 973 K, validating the use of tungsten carbide for the second-stage anvils. The present study reveals the capability of the MA6-8 cells in neutron-diffraction experiments to attain pressures and temperatures beyond the limits of the conventional MA6-6 cells used in the high-pressure neutron diffractometer PLANET at the MLF, J-PARC.

Journal Articles

Experimental evidence for the existence of a second partially-ordered phase of ice VI

Yamane, Ryo*; Komatsu, Kazuki*; Gochi, Jun*; Uwatoko, Yoshiya*; Machida, Shinichi*; Hattori, Takanori; Ito, Hayate*; Kagi, Hiroyuki*

Nature Communications (Internet), 12, p.1129_1 - 1129_6, 2021/02

 Times Cited Count:28 Percentile:85.51(Multidisciplinary Sciences)

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here we report a new high-pressure phase, ice XIX, which is a second hydrogen-ordered phase of ice VI. This is the first discovery to demonstrate that disordered ice undergoes different manners of hydrogen ordering. Such multiplicity can appear in all disordered ice, and it widely provides a new research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.

Journal Articles

Neutron diffraction study of hydrogen site occupancy in Fe$$_{0.95}$$Si$$_{0.05}$$ at 14.7 GPa and 800 K

Mori, Yuichiro*; Kagi, Hiroyuki*; Kakizawa, Sho*; Komatsu, Kazuki*; Shito, Chikara*; Iizuka, Riko*; Aoki, Katsutoshi*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; et al.

Journal of Mineralogical and Petrological Sciences, 116(6), p.309 - 313, 2021/00

 Times Cited Count:0 Percentile:0.02(Mineralogy)

The Earth's core is believed to contain some light elements because it is 10% less dense than pure Fe under the corresponding pressure and temperature conditions. Hydrogen, a promising candidate among light elements, has phase relations and physical properties that have been investigated mainly for the Fe-H system. This study specifically examined an Fe-Si-H system using in-situ neutron diffraction experiments to investigate the site occupancy of deuterium of hcp-Fez$$_{0.95}$$Si$$_{0.05}$$ hydride at 14.7 GPa and 800 K. Results of Rietveld refinement indicate hcp-Fe$$_{0.95}$$Si$$_{0.05}$$ hydride as having deuterium (D) occupancy of 0.24(2) exclusively at the interstitial octahedral site in the hcp lattice. The effect on the site occupancy of D by addition of 2.6 wt% Si into Fe (Fe$$_{0.95}$$Si$$_{0.05}$$) was negligible compared to results obtained from an earlier study of an Fe-D system (Machida et al., 2019).

Journal Articles

Neutron diffraction study on the deuterium composition of nickel deuteride at high temperatures and high pressures

Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Physica B; Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06

 Times Cited Count:2 Percentile:12.9(Physics, Condensed Matter)

The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) ${AA $^{3}$/D}$ atom was obtained. This value is in agreement with the values of 2.14-2.2 ${AA $^{3}$/D}$ atom previously reported for Ni and Ni$$_{0.8}$$ Fe$$_{0.2}$$ alloy.

Journal Articles

Crystal and magnetic structures of double hexagonal close-packed iron deuteride

Saito, Hiroyuki*; Machida, Akihiko*; Iizuka, Riko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Scientific Reports (Internet), 10, p.9934_1 - 9934_8, 2020/06

 Times Cited Count:3 Percentile:15.07(Multidisciplinary Sciences)

Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 GPa. The $$varepsilon$$' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD$$_{0.68(1)}$$ at 673 K and 6.1 GPa and FeD$$_{0.74(1)}$$ at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD$$_{1.0}$$. In the dhcp FeD$$_{1.0}$$ at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11 $$pm$$ 0.06 B/Fe-atom aligned ferromagnetically in parallel on the Fe planes.

Journal Articles

Anomalous hydrogen dynamics of the ice VII-VIII transition revealed by high-pressure neutron diffraction

Komatsu, Kazuki*; Klotz, S.*; Machida, Shinichi*; Sano, Asami; Hattori, Takanori; Kagi, Hiroyuki*

Proceedings of the National Academy of Sciences of the United States of America, 117(12), p.6356 - 6361, 2020/03

 Times Cited Count:16 Percentile:57.81(Multidisciplinary Sciences)

Above 2 GPa the phase diagram of water simplifies considerably and exhibits only two solid phases up to 60 GPa, ice VII and ice VIII. The two phases are related to each other by hydrogen ordering, with the oxygen sub-lattice being essentially the same. Here we present neutron diffraction data to 15 GPa which reveal that the rate of hydrogen-ordering at the ice VII-VIII transition decreases strongly with pressure to reach time scales of minutes at 10 GPa. Surprisingly, the ordering process becomes more rapid again upon further compression. We show that such an unusual change in transition rate can be explained by a slowing-down of the rotational dynamics of water molecules with a simultaneous increase of translational motion of hydrogen under pressure, as previously suspected. The observed crossover in the hydrogen dynamics in ice is likely the origin of various hitherto unexplained anomalies of ice VII in the 10-15 GPa range reported by Raman spectroscopy, X-ray diffraction, and proton conductivity.

Journal Articles

Ice I$$_{rm c}$$ without stacking disorder by evacuating hydrogen from hydrogen hydrate

Komatsu, Kazuki*; Machida, Shinichi*; Noritake, Fumiya*; Hattori, Takanori; Sano, Asami; Yamane, Ryo*; Yamashita, Keishiro*; Kagi, Hiroyuki*

Nature Communications (Internet), 11, p.464_1 - 464_5, 2020/02

 Times Cited Count:45 Percentile:87.08(Multidisciplinary Sciences)

Water freezes below 0$$^{circ}$$C at ambient pressure ordinarily to ice I$$_{rm h}$$, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, but ideal ice I$$_{rm c}$$ without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice I$$_{rm c}$$ without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C$$_{2}$$, which has a host framework isostructural with ice I$$_{rm c}$$. The stacking-disorder free ice I$$_{rm c}$$ is formed from C$$_{2}$$ via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice I$$_{rm c}$$ shows remarkable thermal stability, until the phase transition to ice I$$_{rm h}$$ at 250 K, originating from the lack of dislocations. This discovery of ideal ice I$$_{rm c}$$ will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice I$$_{rm h}$$.

Journal Articles

Crystal structure of a high-pressure phase of magnesium chloride hexahydrate determined by ${it in-situ}$ X-ray and neutron diffraction methods

Yamashita, Keishiro*; Komatsu, Kazuki*; Hattori, Takanori; Machida, Shinichi*; Kagi, Hiroyuki*

Acta Crystallographica Section C; Structural Chemistry (Internet), 75(12), p.1605 - 1612, 2019/12

 Times Cited Count:7 Percentile:58.9(Chemistry, Multidisciplinary)

A crystal structure of a high-pressure phase of magnesium chloride hexahydrate (MgCl$$_{2}$$ $$cdot$$ 6H$$_{2}$$O-II) and its deuterated counterpart (MgCl$$_{2}$$ $$cdot$$ 6D$$_{2}$$O-II) have been identified for the first time by in-situ single-crystal X-ray and powder neutron diffraction. The crystal structure was analyzed by the Rietveld method for the neutron diffraction pattern based on the initial structure determined by single-crystal X-ray diffraction. This high-pressure phase has a similar framework to that in the known ambient-pressure phase, but exhibits some structural changes with symmetry reduction caused by a subtle modification in the hydrogen-bond network around the Mg(H$$_{2}$$O)$$_{6}$$ octahedra. These structural features reflect the strain in the high-pressure phases of MgCl$$_{2}$$ hydrates.

Journal Articles

Hexagonal close-packed iron hydride behind the conventional phase diagram

Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Scientific Reports (Internet), 9(1), p.12290_1 - 12290_9, 2019/08

 Times Cited Count:25 Percentile:83.96(Multidisciplinary Sciences)

Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature ($$T$$) and pressure ($$P$$) conditions, including those corresponding to the Earth's inner core. ${{it In situ}}$ X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeH$$_{x}$$ compositions when $$x < 0.6$$. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5) $AA $^{3}$$/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in $$x$$ with $$T$$, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive $$x$$-$$T$$-$$P$$ region.

Journal Articles

Highlight of recent sample environment at J-PARC MLF

Kawamura, Seiko; Hattori, Takanori; Harjo, S.; Ikeda, Kazutaka*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Watanabe, Masao; Sakaguchi, Yoshifumi*; Oku, Takayuki

Neutron News, 30(1), p.11 - 13, 2019/05

In Japanese neutron scattering facilities, some SE equipment that are frequently used at an instrument, such as the closed-cycle refrigerator (CCR), have been prepared for the instrument as standard SE. They are operated for user experiments by the instrument group. The advantage of this practice is that they can optimize the design of the SE for the instrument and can directly respond to users' requests. On the other hand, the SE team in the Materials and Life Science Experimental Facility (MLF) in J-PARC has managed commonly used SE to allow neutron experiments with more advanced SE. In this report, recent SE in the MLF is introduced. Highlighted are the SE in BL11, BL19, BL21 and BL17 and other SE recently progressed by the SE team.

Journal Articles

Direct observation of symmetrization of hydrogen bond in $$delta$$-AlOOH under mantle conditions using neutron diffraction

Sano, Asami; Hattori, Takanori; Komatsu, Kazuki*; Kagi, Hiroyuki*; Nagai, Takaya*; Molaison, J. J.*; Dos Santos, A. M.*; Tulk, C. A.*

Scientific Reports (Internet), 8(1), p.15520_1 - 15520_9, 2018/10

 Times Cited Count:43 Percentile:92.48(Multidisciplinary Sciences)

The pressure response of hydrogen bond in aluminous hydroxide $$delta$$-AlOOH, which is an important candidate for water carrier to the deep Earth in a subducting slab, was investigated using neutron diffraction under high pressure. The symmetrization of hydrogen bond in which hydrogen locates at the center between two oxygen atoms was observed directly for the first time. The present result indicates that the changes of mineral properties such as increase in bulk modulus and sound velocities, which were previously found, were induced by the symmetrization and disorder state that was also found at just below the symmetrization pressure. Even the symmetrization is a small change in the hydrogen location but it is playing an important role in determining the physical properties of minerals.

Journal Articles

Occupation sites and valence states of Co dopants in (La, Co)-codoped M-type Sr ferrite; $$^{57}$$Fe and $$^{59}$$Co nuclear magnetic resonance studies

Sakai, Hironori; Hattori, Taisuke; Tokunaga, Yo; Kambe, Shinsaku; Ueda, Hiroaki*; Tanioku, Yasuaki*; Michioka, Chishiro*; Yoshimura, Kazuyoshi*; Takao, Kenta*; Shimoda, Aiko*; et al.

Physical Review B, 98(6), p.064403_1 - 064403_10, 2018/08

 Times Cited Count:10 Percentile:45.99(Materials Science, Multidisciplinary)

To specify preferential occupation sites of Co substituents and to clarify charge and spin states of Co ions in (La, Co)-cosubstituted hexagonal magnetoplumbite-type (M-type) Sr ferrite, $$^{57}$$Fe and $$^{59}$$Co nuclear magnetic resonance (NMR) spectra are measured under zero and external magnetic fields using powdered and single crystalline specimens. To a considerable degree, the charge compensation between La$$^{3+}$$ and Co$$^{2+}$$ works in the equal (La, Co)-codoped case, where more than half of the Co ions are considered to be present in the minority spin $$4f_1$$ sites at the center of the oxygen tetrahedra, with the $$S$$ = 3/2 state carrying a small orbital moment owing to spin-orbit interaction. The remaining small number of high-spin Co$$^{2+}$$ ($$S$$ = 3/2, $$L$$ = 1) ions with unquenched orbital moments would be distributed to the other octahedral $$12k$$, $$2a$$, and $$4f_2$$ sites.

Journal Articles

Pressure-induced stacking disorder in boehmite

Ishii, Yusuke*; Komatsu, Kazuki*; Nakano, Satoshi*; Machida, Shinichi*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*

Physical Chemistry Chemical Physics, 20(24), p.16650 - 16656, 2018/06

 Times Cited Count:4 Percentile:17.83(Chemistry, Physical)

The structure of an aluminum layered hydroxide, boehmite ($$gamma$$-AlOOH), as a function of pressure was studied by using ${it in situ}$ synchrotron X-ray and neutron diffraction. Peak broadening and subsequent splitting, which are only found for hkl (h $$neq$$ 0) peaks in the X-ray diffraction patterns above 25 GPa, are explained by stacking disorder accompanied with a continuously increasing displacement of the AlO$$_{6}$$ octahedral layer along a-axis. This finding could be the first experimental result for the pressure-induced stacking disorder driven by the continuous layer displacement. The magnitude of the layer displacement was estimated from the X-ray scattering profile calculation based on the stacking disordered structure model. Hydrogen bond geometries of boehmite, obtained by structure refinements on the observed neutron diffraction patterns for deuterated sample up to 10 GPa, show linearly approaching O-D covalent and D$$cdots$$O hydrogen bond distances and they could merge below 26 GPa. The pressure-induced stacking disorder would make the electrostatic potential of hydrogen bonds asymmetric, yielding less chance for the proton-tunnelling.

Journal Articles

High-pressure-high-temperature study of benzene; Refined crystal structure and new phase diagram up to 8 GPa and 923 K

Chanyshev, A. D.*; Litasov, K. D.*; Rashchenko, S.*; Sano, Asami; Kagi, Hiroyuki*; Hattori, Takanori; Shatskiy, A. F.*; Dymshits, A. M.*; Sharygin, I. S.*; Higo, Yuji*

Crystal Growth & Design, 18(5), p.3016 - 3026, 2018/05

 Times Cited Count:19 Percentile:84.86(Chemistry, Multidisciplinary)

The high-temperature structural properties of solid benzene were studied at 1.5-8.2 GPa up to melting or decomposition using multi-anvil apparatus and in situ neutron and X-ray diffraction. The crystal structure of deuterated benzene phase II (P2$$_{1}$$/c unit cell) was refined at 3.6-8.2 GPa and 473-873 K. Our data show a minor temperature effect on the change in the unit cell parameters of deuterated benzene at 7.8-8.2 GPa. At 3.6-4.0 GPa, we observed the deviation of deuterium atoms from the benzene ring plane and minor zigzag deformation of the benzene ring, enhancing with the temperature increase caused by the displacement of benzene molecules and decrease of van der Waals bond length between the $$pi$$-conjuncted carbon skeleton and the deuterium atom of adjacent molecule. Deformation of benzene molecule at 723-773 K and 3.9-4.0 GPa could be related to the benzene oligomerization at the same conditions. In the pressure range of 1.5-8.2 GPa, benzene decomposition was defined between 773-923 K. Melting was identified at 2.2 GPa and 573 K. Quenched products analyzed by Raman spectroscopy consist of carbonaceous material. The defined benzene phase diagram appears to be consistent with those of naphthalene, pyrene, and coronene at 1.5-8 GPa.

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

159 (Records 1-20 displayed on this page)