Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Machida, Akihiko*; Saito, Hiroyuki*; Aoki, Katsutoshi*; Komatsu, Kazuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Machida, Shinichi*; Sato, Toyoto*; Orimo, Shinichi*
Physical Review B, 111(22), p.224413_1 - 224413_6, 2025/06
Times Cited Count:1The crystal and magnetic structures of antiferromagnetic Mn deuterides formed by hydrogenating Mn metal at high temperature and high pressure, fcc -MnDx and hcp
-MnDx, were investigated by in-situ neutron powder diffraction. Deuterium atoms partially occupied the octahedral interstitial positions of the fcc and hcp metal lattices. The site occupancies increased rapidly with decreasing temperature from
700 to
450 K and remained down to 300 K. N
el temperature of 543(10) K was determined for
-MnD
. For
-MnD
, saturation magnetic moment and N
el temperature were determined to be 0.82(1)
and 347(3) K, respectively. The N
el temperatures determined for
-MnD
and
-MnD
are consistent with those predicted by the respective Slater-Pauling curves proposed in previous studies. The updated N
el temperatures provide insights into the development of more accurate Slater-Pauling curves based on electronic band structure calculations.
Aoki, Katsutoshi*; Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori
Koatsuryoku No Kagaku To Gijutsu, 35(1), p.4 - 11, 2025/03
Iron reacts with hydrogen to form solid solutions with body-centered cubic, face-centered cubic, hexagonal close packed, and double hexagonal close packed structures at high temperatures and high pressures. Neutron diffraction is the most powerful tool for determining the occupation sites and occupancies of hydrogen atoms dissolved in a metal lattice. Structural parameters, including hydrogen occupation sites and occupancies, are refined via Rietveld analysis for neutron diffraction data. We present our expertise in Rietveld refinement of iron hydrides accumulated over 10 years.
Yamashita, Keishiro*; Komatsu, Kazuki*; Hattori, Takanori; Machida, Shinichi*; Kagi, Hiroyuki*
Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 80(6), p.695 - 705, 2024/12
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)So far, the odd hydration number has been missing in the water-rich magnesium chloride hydrate series (MgClH
O). In this study, we have identified magnesium chloride heptahydrate, MgCl
7H
O (or MgCl
7D
O) which forms at high pressures and high temperatures of above 2 GPa and above 300 K, respectively. Its structure has been determined by a combination of
single crystal X-ray diffraction at 2.5 GPa and 298 K and powder neutron diffraction at 3.1 GPa and 300 K. The results showed an orientational disorder of water molecules, which was also examined by the density-functional-theory calculations. The disorder involves the reconnection of hydrogen bonds, which differs from those in water ice phases and known disordered salt hydrates. The shrinkage by compression occurs mainly in one direction. In the plane perpendicular to this most compressible direction, oxygen and chlorine atoms are in a hexagonal-like arrangement.
Machida, Akihiko*; Saito, Hiroyuki*; Sugimoto, Hidehiko*; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Katayama, Yoshinori*; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.
Nature Communications (Internet), 15, p.8861_1 - 8861_2, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)In our previous article (Nature Commun. 5, 5063 (2014)), the site occupancies of D atoms dissolved in an fcc Fe metal lattice were investigated via Rietveld refinement of neutron powder diffraction patterns collected at 988 K and 6.3 GPa. The fcc metal lattice has two interstitial sites available for accommodating D atoms: octahedral and tetrahedral sites. The Rietveld refinement revealed that D atoms occupied mainly the octahedral sites with occupancy of 0.532 and slightly the tetrahedral sites with occupancy of 0.056. Subsequent density-functional-theory (DFT) calculations by Antonov (Phys. Rev. Mater. 2019)) showed that the occupation energy on the tetrahedral site was significantly higher than that on the octahedral site; the tetrahedral site occupation was unlikely to occur even at temperatures as high as 988 K. We reexamined the site occupancies of D-atom by Rietveld refinement including extinction correction. As a result, the octahedral occupancy was increased to 0.60 and the tetrahedral occupancy was reduced to zero. The occupation of only the octahedral site for D atom is consistent with the DFT calculation, although in contrast to the previous results.
He, X.*; Kagi, Hiroyuki*; Komatsu, Kazuki*; Iizuka, Riko*; Okajima, Hajime*; Hattori, Takanori; Sano, Asami; Machida, Shinichi*; Abe, Jun*; Goto, Hirotada*; et al.
Journal of Molecular Structure, 1310, p.138271_1 - 138271_8, 2024/08
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)High-pressure responses of the O-DF hydrogen bonds in deuterated magnesium hydroxyfluoride were investigated using neutron powder diffraction and Raman spectroscopy. The Rietveld analysis at ambient conditions revealed a chemical formula of Mg(OD)
F
and hydroxyl group/fluorine disorder (OD/F disorder) in the crystal structure, which gave rise to two hydrogen-bonding configurations. The Rietveld analysis showed the hydrogen-bonding geometries remains up to 9.8 GPa, indicating no pressure-induced strengthening of hydrogen bonds. The Raman spectra at ambient conditions showed three hydroxyl stretching bands at 2613, 2694, and 2718 cm
. The high frequencies of the O-D stretching modes indicated that the hydroxyls should be involved in weak or none hydrogen-bonding interactions. Up to 20.2 GPa, the mode initially centered at 2694 cm
displayed a pressure-induced blue shift, revealing no strengthening of hydrogen bonds under compression. We discuss the existence of hydrogen bonds and the causes of the blue-shifting hydroxyls at ambient and at high pressures.
Komatsu, Kazuki*; Hattori, Takanori; Klotz, S.*; Machida, Shinichi*; Yamashita, Keishiro*; Ito, Hayate*; Kobayashi, Hiroki*; Irifune, Tetsuo*; Shimmei, Toru*; Sano, Asami; et al.
Nature Communications (Internet), 15, p.5100_1 - 5100_7, 2024/06
Times Cited Count:5 Percentile:67.98(Multidisciplinary Sciences)Hydrogen bond symmetrisation is the phenomenon where a hydrogen atom is located at the centre of a hydrogen bond. Theoretical studies predict that hydrogen bonds in ice VII eventually undergo symmetrisation upon increasing pressure, involving nuclear quantum effect with significant isotope effect and drastic changes in the elastic properties through several intermediate states with varying hydrogen distribution. Despite numerous experimental studies conducted, the location of hydrogen and hence the transition pressures reported up to date remain inconsistent. Here we report the atomic distribution of deuterium in DO ice using neutron diffraction above 100 GPa and observe for the first time the transition from a bimodal to a unimodal distribution of deuterium at around 80 GPa. At the transition pressure, a significant narrowing of the peak widths of 110 was also observed, attributed to the structural relaxation by the change of elastic properties.
Kobayashi, Hiroki*; Komatsu, Kazuki*; Ito, Hayate*; Machida, Shinichi*; Hattori, Takanori; Kagi, Hiroyuki*
Journal of Physical Chemistry Letters (Internet), 14(47), p.10664 - 10669, 2023/11
Times Cited Count:2 Percentile:26.29(Chemistry, Physical)Ice IV is a metastable high-pressure phase of ice in which the water molecules exhibit orientational disorder. Although orientational ordering is commonly observed for other ice phases, it has not been reported for ice IV. We conducted powder neutron diffraction experiments for DCl-doped D
O ice IV to investigate hydrogen ordering in ice IV. We found abrupt changes in the temperature derivative of unit cell volume, dV/dT, at about 120 K, and revealed their slightly ordered structure at low temperatures based on the Rietveld method. The occupancy of the D1 site deviates from 0.5; it increased when samples were cooled at higher pressures and reached 0.282(5) at 2.38 GPa, 58 K. Our results evidence the presence of a low-symmetry hydrogen-ordered state corresponding to ice IV. It seems, however, difficult to experimentally access the completely ordered phase corresponding to ice IV by slow cooling at high pressure.
Yamashita, Keishiro*; Nakayama, Kazuya*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*
Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 79(5), p.414 - 426, 2023/10
Times Cited Count:2 Percentile:41.77(Chemistry, Multidisciplinary)The structure of a recently-found hyperhydrated form of sodium chloride, NaCl 13H(D)
O, has been determined by
single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. Here, we present an example for further insights into a hydrogen-bond network containing ionic species.
Shito, Chikara*; Kagi, Hiroyuki*; Kakizawa, Sho*; Aoki, Katsutoshi*; Komatsu, Kazuki*; Iizuka, Riko*; Abe, Jun*; Saito, Hiroyuki*; Sano, Asami; Hattori, Takanori
American Mineralogist, 108(4), p.659 - 666, 2023/04
Times Cited Count:5 Percentile:68.90(Geochemistry & Geophysics)The phase relation and crystal structure of FeNi
H
(D
) at high pressures and temperatures up to 12 GPa and 1000 K were clarified by in-situ X-ray and neutron diffraction measurements. Under
conditions of the present study, no deuterium atoms occupied tetragonal (
) sites of face-centered cubic (fcc) Fe
Ni
D
unlike fcc FeH
(D
). The deuterium-induced volume expansion per deuterium
was determined as 2.45(4)
and 3.31(6)
for fcc and hcp phases, respectively, which were significantly larger than the corresponding values for FeD
. The
value slightly increased with increasing temperature. This study suggests that only 10% of nickel in iron drastically changes the behaviors of hydrogen in metal. Assuming that
is constant regardless of pressure, the maximum hydrogen content in the Earth's inner core is estimated to be one to two times the amount of hydrogen in the oceans.
Yamashita, Keishiro*; Komatsu, Kazuki*; Klotz, S.*; Fabelo, O.*; Fernndez-D
az, M. T.*; Abe, Jun*; Machida, Shinichi*; Hattori, Takanori; Irifune, Tetsuo*; Shimmei, Toru*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(40), p.e2208717119_1 - e2208717119_6, 2022/10
Times Cited Count:7 Percentile:36.64(Multidisciplinary Sciences)Here we present the first elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K from both single-crystal and powder neutron diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly-accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these noble findings are related to the proton dynamics which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.
Iizuka, Riko*; Goto, Hirotada*; Shito, Chikara*; Fukuyama, Ko*; Mori, Yuichiro*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Kagi, Hiroyuki*
Scientific Reports (Internet), 11(1), p.12632_1 - 12632_10, 2021/06
Times Cited Count:5 Percentile:33.44(Multidisciplinary Sciences)The Earth's core consist of Fe-Ni alloy with some light elements (H, C, O, Si, S etc.). Hydrogen (H) is the most abundant element in the universe and one of the promising candidates. In this study, we have investigated the effects of sulfur(S) on hydrogenation of iron-hydrous silicate system containing saturated water in the ideal composition of the primitive Earth. We observed a series of phase transitions of Fe, dehydration of the hydrous mineral, and formation of olivine and enstatite with increasing temperature. The FeS formed as the coexisting phase of Fe under high-pressure and temperature condition, but its unit cell volume did not increase, suggesting that FeS is hardly hydrogenated. Recovered samples exhibited that H and S can be incorporated into solid Fe, which lowers the melting temperature as Fe(H)-FeS system. No detection of other light elements (C, O, Si) in solid Fe suggests that they dissolve into molten iron hydride and/or FeS in the later process of Earth's core-mantle differentiation.
Sano, Asami; Kakizawa, Sho*; Shito, Chikara*; Hattori, Takanori; Machida, Shinichi*; Abe, Jun*; Funakoshi, Kenichi*; Kagi, Hiroyuki*
High Pressure Research, 41(1), p.65 - 74, 2021/03
Times Cited Count:4 Percentile:38.13(Physics, Multidisciplinary)We applied Kawai-type multi-anvil assemblies (MA6-8) for time-of-flight neutron-diffraction experiments to achieve high pressures and high temperatures simultaneously. To achieve sufficient signal intensities, the angular access to the sample was enlarged using slits and tapers on the first-stage anvils. Using SiC-binder sintered diamond for the second-stage anvils that transmits neutrons, sufficient signal intensities were achieved at a high-pressure of 23.1 GPa. A high-temperature experiment was also conducted at 16.2 GPa and 973 K, validating the use of tungsten carbide for the second-stage anvils. The present study reveals the capability of the MA6-8 cells in neutron-diffraction experiments to attain pressures and temperatures beyond the limits of the conventional MA6-6 cells used in the high-pressure neutron diffractometer PLANET at the MLF, J-PARC.
Yamane, Ryo*; Komatsu, Kazuki*; Gochi, Jun*; Uwatoko, Yoshiya*; Machida, Shinichi*; Hattori, Takanori; Ito, Hayate*; Kagi, Hiroyuki*
Nature Communications (Internet), 12, p.1129_1 - 1129_6, 2021/02
Times Cited Count:41 Percentile:84.20(Multidisciplinary Sciences)Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here we report a new high-pressure phase, ice XIX, which is a second hydrogen-ordered phase of ice VI. This is the first discovery to demonstrate that disordered ice undergoes different manners of hydrogen ordering. Such multiplicity can appear in all disordered ice, and it widely provides a new research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.
Mori, Yuichiro*; Kagi, Hiroyuki*; Kakizawa, Sho*; Komatsu, Kazuki*; Shito, Chikara*; Iizuka, Riko*; Aoki, Katsutoshi*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; et al.
Journal of Mineralogical and Petrological Sciences, 116(6), p.309 - 313, 2021/00
Times Cited Count:2 Percentile:10.53(Mineralogy)The Earth's core is believed to contain some light elements because it is 10% less dense than pure Fe under the corresponding pressure and temperature conditions. Hydrogen, a promising candidate among light elements, has phase relations and physical properties that have been investigated mainly for the Fe-H system. This study specifically examined an Fe-Si-H system using in-situ neutron diffraction experiments to investigate the site occupancy of deuterium of hcp-FezSi
hydride at 14.7 GPa and 800 K. Results of Rietveld refinement indicate hcp-Fe
Si
hydride as having deuterium (D) occupancy of 0.24(2) exclusively at the interstitial octahedral site in the hcp lattice. The effect on the site occupancy of D by addition of 2.6 wt% Si into Fe (Fe
Si
) was negligible compared to results obtained from an earlier study of an Fe-D system (Machida et al., 2019).
Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Physica B; Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06
Times Cited Count:5 Percentile:24.90(Physics, Condensed Matter)The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) atom was obtained. This value is in agreement with the values of 2.14-2.2
atom previously reported for Ni and Ni
Fe
alloy.
Saito, Hiroyuki*; Machida, Akihiko*; Iizuka, Riko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Scientific Reports (Internet), 10, p.9934_1 - 9934_8, 2020/06
Times Cited Count:6 Percentile:19.04(Multidisciplinary Sciences)Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 GPa. The ' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD
at 673 K and 6.1 GPa and FeD
at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD
. In the dhcp FeD
at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11
0.06 B/Fe-atom aligned ferromagnetically in parallel on the Fe planes.
Komatsu, Kazuki*; Klotz, S.*; Machida, Shinichi*; Sano, Asami; Hattori, Takanori; Kagi, Hiroyuki*
Proceedings of the National Academy of Sciences of the United States of America, 117(12), p.6356 - 6361, 2020/03
Times Cited Count:22 Percentile:58.64(Multidisciplinary Sciences)Above 2 GPa the phase diagram of water simplifies considerably and exhibits only two solid phases up to 60 GPa, ice VII and ice VIII. The two phases are related to each other by hydrogen ordering, with the oxygen sub-lattice being essentially the same. Here we present neutron diffraction data to 15 GPa which reveal that the rate of hydrogen-ordering at the ice VII-VIII transition decreases strongly with pressure to reach time scales of minutes at 10 GPa. Surprisingly, the ordering process becomes more rapid again upon further compression. We show that such an unusual change in transition rate can be explained by a slowing-down of the rotational dynamics of water molecules with a simultaneous increase of translational motion of hydrogen under pressure, as previously suspected. The observed crossover in the hydrogen dynamics in ice is likely the origin of various hitherto unexplained anomalies of ice VII in the 10-15 GPa range reported by Raman spectroscopy, X-ray diffraction, and proton conductivity.
Komatsu, Kazuki*; Machida, Shinichi*; Noritake, Fumiya*; Hattori, Takanori; Sano, Asami; Yamane, Ryo*; Yamashita, Keishiro*; Kagi, Hiroyuki*
Nature Communications (Internet), 11, p.464_1 - 464_5, 2020/02
Times Cited Count:61 Percentile:87.23(Multidisciplinary Sciences)Water freezes below 0C at ambient pressure ordinarily to ice I
, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, but ideal ice I
without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice I
without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C
, which has a host framework isostructural with ice I
. The stacking-disorder free ice I
is formed from C
via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice I
shows remarkable thermal stability, until the phase transition to ice I
at 250 K, originating from the lack of dislocations. This discovery of ideal ice I
will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice I
.
Yamashita, Keishiro*; Komatsu, Kazuki*; Hattori, Takanori; Machida, Shinichi*; Kagi, Hiroyuki*
Acta Crystallographica Section C; Structural Chemistry (Internet), 75(12), p.1605 - 1612, 2019/12
Times Cited Count:11 Percentile:68.40(Chemistry, Multidisciplinary)A crystal structure of a high-pressure phase of magnesium chloride hexahydrate (MgCl
6H
O-II) and its deuterated counterpart (MgCl
6D
O-II) have been identified for the first time by in-situ single-crystal X-ray and powder neutron diffraction. The crystal structure was analyzed by the Rietveld method for the neutron diffraction pattern based on the initial structure determined by single-crystal X-ray diffraction. This high-pressure phase has a similar framework to that in the known ambient-pressure phase, but exhibits some structural changes with symmetry reduction caused by a subtle modification in the hydrogen-bond network around the Mg(H
O)
octahedra. These structural features reflect the strain in the high-pressure phases of MgCl
hydrates.
Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Scientific Reports (Internet), 9(1), p.12290_1 - 12290_9, 2019/08
Times Cited Count:31 Percentile:83.03(Multidisciplinary Sciences)Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature () and pressure (
) conditions, including those corresponding to the Earth's inner core.
X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeH
compositions when
. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5)
/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in
with
, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive
-
-
region.