Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Honda, Mitsunori; Kaneta, Yui; Muraguchi, Masakazu*; Hayakawa, Kosetsu*; Oda, Masato*; Iino, Chiaki*; Ishii, Hiroyuki*; Goto, Takuya*
AIP Advances (Internet), 14(5), p.055034_1 - 055034_6, 2024/05
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)This study examines the utilization of Fukushima weathered biotite(WB)as an alternative to conventional thermoelectric materials traditionally derived from rare and toxic substances. WB underwent milling, classification, and subsequent heat treatment via molten-salt treatment to produce crystals exhibiting conductivity akin to semiconductors within from 650C to 850C range. Evaluation of WB and the derived crystal's electrical conductivity and Seebeck coefficient showcased their viability for high-temperature thermoelectric applications. Consequently, WB attained a dimensionless figure of merit (ZT) of 0.015, signaling its potential as a thermoelectric material that surpasses 650C.
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Nuclear Engineering and Technology, 56(3), p.893 - 899, 2024/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Kin, Tadahiro*; Shinohara, Hirofumi*
Isotope News, (790), p.19 - 23, 2023/12
When analyzing samples that contain many radionuclides at various concentrations, such as radioactive waste or fuel debris, it is difficult to apply general spectrum analysis methods and is necessary to chemically separate each nuclide before quantifying it. The chemical separation is especially essential for analysis using a liquid scintillation counter (LSC). In this report, the authors explain the newly developed spectral determination method (SDM) in which the entire spectrum is fitted to quantify radioactivity of nuclides mixed in a sample. By applying the SDM to - and X-ray spectrum measured by LSC and -ray spectrum measured by Ge detector simultaneously, the authors demonstrated that radioactivity of 40 radionuclides mixed in a sample at concentrations varying by two orders could be quantified, which is useful to simplify chemical separation process in radionuclide quantification.
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 6 Pages, 2023/04
Hayakawa, Masato; Shimoyama, Kazuhito; Miyakoshi, Hiroyuki; Suzuki, Shigeaki*
JAEA-Technology 2021-027, 33 Pages, 2022/01
At the Oarai Research and Development Institute of the Japan Atomic Energy Agency, experimental studies in various sodium environments are being conducted in connection with the research and development of sodium-cooled fast reactors such as the experimental fast reactor Joyo and the prototype fast reactor Monju. The dismantling of sodium test facilities and equipment that have achieved their purpose has been carried out sequentially, and a wealth of experience and technology has been accumulated. On the other hand, a large amount of metallic sodium used for research and testing is being reused for new testing facilities, and the large sodium tanks that contained the metallic sodium are being dismantled. In order to dismantle these tanks safely and efficiently, it is important to reduce the residual sodium inside the tanks (especially at the bottom) as much as possible before dismantling. Therefore, we have been working on the reduction of residual sodium at the bottom of several large sodium tanks of 100 m class. This report describes the technologies and experiences related to the reduction of residual sodium that have been carried out so far.
Hashimoto, Makoto; Kinase, Sakae; Munakata, Masahiro; Murayama, Takashi; Takahashi, Masa; Takada, Chie; Okamoto, Akiko; Hayakawa, Tsuyoshi; Sukegawa, Masato; Kume, Nobuhide*; et al.
JAEA-Review 2020-071, 53 Pages, 2021/03
In the case of a nuclear accident or a radiological emergency, the Japan Atomic Energy Agency (JAEA), as a designated public corporation assigned in the Disaster Countermeasures Basic Act and the Armed Attack Situation Response Law, undertakes technical supports to the national government and local governments. The JAEA is requested to support to evaluate radiation doses to residents in a nuclear emergency, which is specified in the Basic Disaster Management Plan and the Nuclear Emergency Response Manual. For the dose evaluation, however, its strategy, target, method, structure and so on have not been determined either specifically or in detail. This report describes the results of investigation and consideration discussed in the "Working Group for Radiation Dose Evaluation at a Nuclear Emergency" established within the Nuclear Emergency Assistance and Training Center to discuss technical supports for radiation dose evaluation to residents in the case of a nuclear emergency, and aims at contributing to specific and detailed discussion and activities in the future for the national government and local governments, also within the JAEA.
Kono, Takahiko; Shimo, Michikuni*; Hayakawa, Hironobu*; Taniguchi, Kazufumi*; Tanaka, Masato*; Tanaka, Hitomi*; Onoue, Yosuke*; Nagaya, Hiroshi*; Torii, Hiroyuki*; Uno, Kazuko*
Hoken Butsuri (Internet), 55(4), p.226 - 238, 2020/12
After the accident at the Fukushima Daiichi Nuclear Power Station, artificial radionuclides such as radioactive cesium and iodine were released into the environment. It caused great anxiety not only in the vicinity of the Fukushima Daiichi Nuclear Power Station but also in other regions of Japan. Some members of the Japan Health Physics Society (JHPS) which is a leading academic society in Japan in the field of radiation protection volunteered to establish the website called "Question and Answer about radiation in Daily Life" just after the accident to reduce the anxiety of the residents about the health effects of radiation. After that, Committee of "Question and Answer about radiation in Daily Life" was established in August 2011 in JHPS, and this activity had been carried out under the responsibility of the society that answered with sincerity against questions from the public as specialists until February 2013. The number of questions on the website had gradually decreased as time passed; therefore, the Committee members decided to end these activities in February 2013. In this paper, following contents were shown; the activities of the Q&A website for about two years, the issues of the stance on our activities, the information related to the website activities and the analysis of Twitter data. Based on the experience and the knowledge obtained from these activities, the issues and experiences that can be utilized in the initial response to emergencies for radiation protection experts as well as other fields are presented.
Hatsukawa, Yuichi*; Hayakawa, Takehito*; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Sato, Tetsuya; Asai, Masato; Toyoshima, Atsushi; Tanimori, Toru*; Sonoda, Shinya*; Kabuki, Shigeto*; et al.
PLOS ONE (Internet), 13(12), p.e0208909_1 - e0208909_12, 2018/12
Times Cited Count:3 Percentile:27.63(Multidisciplinary Sciences)Imaging of Tc radioisotope was conducted using an electron tracking-Compton camera (ETCC). Tc emits 204, 582, and 835 keV rays, and was produced in the Mo(p,n)Tc reaction with a Mo-enriched target. The recycling of the Mo-enriched molybdenum trioxide was investigated, and the recycled yield of Mo was achieved to be 70% - 90%. The images were obtained with each of the three rays. Results showed that the spatial resolution increases with increasing -ray energy, and suggested that the ETCC with high-energy -ray emitters such as Tc is useful for the medical imaging of deep tissue and organs in the human body.
Asami, Makoto*; Takahatake, Yoko; Myodo, Masato; Tobita, Takeshi; Kobayashi, Kiwami; Hayakawa, Misa; Usui, Yuka; Watahiki, Hiromi; Shibata, Atsuhiro; Nomura, Kazunori; et al.
JAEA-Data/Code 2017-001, 78 Pages, 2017/03
At Fukushima Daiichi Nuclear Power Station owned by Tokyo Electric Power Company Holdings, Incorporated (TEPCO), contaminated water (accumulated, treated) secondary waste from water treatment, rubble and soil were collected and analyzed. The data already opened to public was collected as this report. The analytical data reported by TEPCO, Japan Atomic Energy Agency and International Research Institute for Nuclear Decommissioning until the end of March, 2016, was collected. Information on the samples and values of radioactive nuclide concentration and others were tabulated, besides figures, which show change in radioactive nuclide concentration for major nuclides, are contained. And, English translation and the collected data are provided as electric data.
Imamura, Hiroaki; Hayakawa, Masato; Handa, Takuya*; Namiki, Katsuo*
JAEA-Technology 2015-020, 85 Pages, 2015/08
Sodium using for past experiments was maintained at the sodium technology development facility in Oarai Research and Development Center. But the oldest dump tank of the sodium was fabricated over forty years ago. It is necessary to keep it safer and more stable condition. Therefore transportation of the sodium from the facility to a new facility was planned not only to keep it safer and more stable condition but also to reuse it for other sodium experiments. Such a large amount of sodium has never been transported between two facilities in Japan. Pipe transportation between two facilities was selected by considering safety, operating efficiency and cost. The transportation equipment with over 200 meters long pipes was constructed and sodium transportation was operated. Total amount of the transported sodium was about 270 m and the flow rate was 12m/h on average.
Seya, Michio; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Iimura, Hideki; Kureta, Masatoshi; Takamine, Jun; Hajima, Ryoichi; Hayakawa, Takehito; et al.
Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-34-Kai Nenji Taikai Rombunshu (Internet), 10 Pages, 2013/10
The forming of MF in severe accidents of nuclear reactors such as Units 1 - 3 of Fukushima-Daiichi NPP (Nuclear Power Plant) inevitably change the category of the nuclear reactor from "item facility" to "bulk-handling facility". At removal of the MF it is necessary to break chunks of MF into relatively small blocks by using some tools, resulting in debris that consists of cut or small rock-like debris and particle (or grain)-like debris in bulk form. This paper presents a categorization of debris of MF and two possible non-destructive assay (NDA) technologies for precise measurement which could be applied to the NM accountancy of MF debris. One of them is Neutron Resonance Densitometry (NRD) for particle-like (or grain-like) debris, and another is NRF (Nuclear Resonance Fluorescence) NDA using LCS (Laser Compton Scattered) -rays (mono-energetic -rays) for cut or small rock-like debris. The paper also describes about the recent development of these two technologies.
Seya, Michio; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Iimura, Hideki; Kureta, Masatoshi; Takamine, Jun; Hajima, Ryoichi; Hayakawa, Takehito; et al.
Proceedings of INMM 54th Annual Meeting (CD-ROM), 9 Pages, 2013/07
The forming of MF in a severe accident of a nuclear reactor may change the category of the nuclear reactor from item facility to non-item facility. Taking this removal process into account, the damaged reactor could be categorized as a bulk-handling facility. The NM accountancy is essential for the safeguards of a bulk-handling facility. This paper presents a categorization of debris of MF (into cut or small rock-like debris and particle (or grain)-like debris) and a selection of possible NDA technologies which could be applied to the NM accountancy of MF debris. The paper introduces two NDA technologies for NM accountancy of debris: NRD for particle-like (or grain-like) debris, and NRF NDA using LCS rays for cut or small rock-like debris. The paper also describes about the development of basic parts of these two technologies and near future plan.
Seya, Michio; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Iimura, Hideki; Kureta, Masatoshi; Takamine, Jun; Hajima, Ryoichi; Hayakawa, Takehito; et al.
Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-33-Kai Nenji Taikai Rombunshu (Internet), 10 Pages, 2012/10
This paper presents feasibility (selection) study of NDA techniques, NRD (Neutron Resonance Densitometry) and LCSG-NRF (LCS -rays interrogation Nuclear Resonance Fluorescence), to measure nuclear material (NM) in debris of melted fuel with high precision. The melted fuel under consideration here is the one formed by the severe loss of coolant accidents of such as Units 1 - 3 of Fukushima-Daiichi NPP. NRD based on NRTA (Neutron Resonance Transmission Analysis) and NRCA (Neutron Resonance Capture Analysis) utilizing the TOF (Time of Flight) method is intended for measurement of NM (all isotopes of U/Pu) in particle-like debris. LCSG-NRF using intense LCS (Laser Compton Scattered) -rays (mono-energetic -rays) is to measure NM (all isotopes of U/Pu) in small rock-like debris and cut-shape debris (cylindrical, slab-shpape). In this paper we also summarize advantages of two techniques compared with other NDA techniques.
Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Tanimoto, Tsuyoshi*; Sagisaka, Akito*; Esirkepov, T. Z.; Kando, Masaki; Shizuma, Toshiyuki; Hayakawa, Takehito; Kiriyama, Hiromitsu; et al.
Optics Letters, 37(14), p.2868 - 2870, 2012/07
Times Cited Count:83 Percentile:95.53(Optics)Using high contrast (10:1) and high intensity (10 W/cm) laser pulse with the duration of 40 fs from OPCPA/Ti:Sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.
Kondo, Masaaki; Kimishima, Satoru*; Emori, Koichi; Sekita, Kenji; Furusawa, Takayuki; Hayakawa, Masato; Kozawa, Takayuki; Aono, Tetsuya; Kuroha, Misao; Ouchi, Hiroshi
JAEA-Technology 2008-062, 46 Pages, 2008/10
The reactor containment of HTTR is tested to confirm leak-tight integrity of itself. "Type A test" has been conducted in accordance with the standard testing method in JEAC4203 since the preoperational verification of the containment was made. Type A tests are identified as basic one for measuring containment leakage rate, it costs much, however. Therefore, the test program for HTTR was revised to adopt an efficient and economical alternatives including "Type B and Type C tests". In JEAC4203-2004, following requirements are specified for adopting alternatives: upward trend of leakage rate by Type A test due to aging should not be recognized; criterion of combined leakage rate with Type B and Type C tests should be established; the criteria for Type A test and combined leakage rate test should be satisfied; correlation between the leakage rates by Type A test and combined leakage rate test should be recognized. Considering the performances of the tests, the policies of corresponding to the requirements were developed, which were accepted by the regulatory agency. This report presents an outline of the tests, identifies issues on the conventional test and summarizes the policies of corresponding to the requirements and of implementing the tests based on the revised program.
Sekita, Kenji; Furusawa, Takayuki; Emori, Koichi; Ishii, Taro*; Kuroha, Misao; Hayakawa, Masato; Ouchi, Hiroshi
JAEA-Technology 2008-057, 45 Pages, 2008/08
A carbon steel used is used for the main material for the components and pipings of the pressurized water cooling system etc. that are the reactor cooling system of the HTTR. Water quality is managed by using the hydrazine in the coolant of the water cooling system to prevent corrosion of the components and deoxidize the coolant. Also, regular analysis is carried out for the confirmation of the water quality. The following results were obtained through the water quality analysis. (1) In the pressurized water cooling system, the coolant temperature rises higher due to the heat removal of the primary coolant. So, the ammonia was formed in the thermal decomposition of the hydrazine. The electric conductivity increased, while the concentration of the hydrazine decreased, there was no problem as the plan it. (2) Thermal decomposition of the hydrazine was not occurred in the auxiliary water cooling system and vessel cooling system because of the coolant temperature was low. (3) An indistinct procedure is clarified and procedure of water quality analysis was established in the HTTR. (4) It is assumed that the corrosion of the components in these water cooling system hardly occurred from measurement results of dissolved oxide and chloride ion. Thus, the water quality was managed enough.
Ando, Masami*; Nakata, Kiyotomo*; Ito, Mikiro*; Tanaka, Norihiko*; Koshiishi, Masato*; Obata, Ryoji*; Miwa, Yukio; Kaji, Yoshiyuki; Hayakawa, Masao*
Proceedings of 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (CD-ROM), 16 Pages, 2007/00
Long term SCC growth tests for nuclear grade stainless steel (SUS316(NG)) were conducted in a simulated BWR environment using specimens taken from mock-up PLR piping weld joints to obtain the crack growth rate (CGR) of the hardened heat affected zone due to weld shrinkage around weld, in order to develop the CGR curve which will be used for flaw evaluation. The piping joints were made of forged and extracted materials with several welding techniques. The obtained CGRs were higher than that of solution heat treated material. The CGRs for hardened SUS316(NG) have a correlation with hardness regardless of materials and welding techniques. The CGRs increased with hardness in the range from 210 to 250 Hv. The CGR acceleration mechanism in hardened HAZ of low carbon stainless steel was estimated based on the strain distribution and the AFM image around a SCC crack tip. It was suggested that the interaction of the plastic strain gradient at a crack tip and local strain along GBs.
Kondo, Masaaki; Sekita, Kenji; Emori, Koichi; Sakaba, Nariaki; Kimishima, Satoru; Kuroha, Misao; Noji, Kiyoshi; Aono, Tetsuya; Hayakawa, Masato
JAEA-Testing 2006-002, 55 Pages, 2006/07
The leakage rate test for the reactor containment vessel of HTTR is conducted in accordance with the absolute pressure method provided in Japan Electric Association Code(JEAC4203). Although leakage test of a reactor containment vessel is, in general, performed in condition of reactor coolant pressure boundary to be opened in order to simulate an accident, the peculiar test method to HTTR which use the helium gas as reactor coolant has been established, in which the pressure boundary is closed to avoid the release of fission products into the environment of the reactor containment vessel. The system for measuring and calculating the data for evaluating the leakage rate for containment vessel of HTTR was developed followed by any modifications. Recently, the system has been improved for more accurate and reliable one with any useful functions including real time monitoring any conditions related to the test. In addition, the configuration of containment vessel boundary for the test and the calibration method for the detectors for measuring temperature in containment vessel have been modified by reflecting the revision of the Code mentioned above. This report describes the method, system configuration, and procedures for the leakage rate test for reactor containment vessel of HTTR.
Hamamoto, Shimpei; Iigaki, Kazuhiko; Shimizu, Atsushi; Sawahata, Hiroaki; Kondo, Makoto; Oyama, Sunao; Kawano, Shuichi; Kobayashi, Shoichi; Kawamoto, Taiki; Suzuki, Hisashi; et al.
JAEA-Technology 2006-030, 58 Pages, 2006/03
During normal operation of High Temperature engineering Test Reactor (HTTR) in Japan Atomic Energy Agency (JAEA), the reactivity is controlled by the Control Rods (CRs) system which consists of 32 CRs (16 pairs) and 16 Control Rod Drive Mechanisms (CRDMs). The CR system is located in stand-pipes accompanied by the Reserved Shutdown System (RSS). In the unlikely event that the CRs fail to be inserted, the RSS is provided to insert BC/C pellets into the core. The RSS shall be designed so that the reactor should be held subcriticality from any operation condition by dropping in the pellets. The RSS consists of BC/C pellets, hoppers which contain the pellets, electric plug, driving mechanisms, guide tubes and so on. In accidents when the CRs cannot be inserted, an electric plug is pulled out by a motor and the absorber pellets fall into the core by gravity. A trouble, malfunction of one RSS out of sixteen, occurred during a series of the pre-start up checks of HTTR on February 21, 2005. We investigated the cause of the RSS trouble and took countermeasures to prevent the issue. As the result of investigation, the cause of the trouble was attributed to the following reason: In the motor inside, The Oil of grease of the multiplying gear flowed down from a gap of the oil seal which has been deformed and was mixed with abrasion powder of brake disk. Therefore the adhesive mixture prevented a motor from rotating.
Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Tanimoto, Tsuyoshi; Sagisaka, Akito; Esirkepov, T. Z.; Shizuma, Toshiyuki; Hayakawa, Takehito; Hajima, Ryoichi; Kando, Masaki; et al.
no journal, ,
We demonstrated the energetic proton generation using 40 fsec intense Ti:Sapphire laser pulses. By drastically increasing the interaction intensity approximately 1E21 W/cm with keeping a ultra high contrast of 1E10:1, even without using plasma mirror, over 40 MeV protons were detected with 800 nm thick Al foil.