Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kimura, Koji*; Tsutsui, Satoshi*; Yamamoto, Yuta*; Nakano, Akitoshi*; Kawamura, Keisuke*; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Martin, A.*; Webber, K. G.*; Kakimoto, Kenichi*; et al.
Physical Review B, 110(13), p.134314_1 - 134314_10, 2024/10
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*
Journal of Physics; Conference Series, 2687(7), p.072006_1 - 072006_6, 2024/01
Times Cited Count:0The mitigation of heat loading is one of the important issues for beam instrumentation to measure the high-power proton beam. Recently, the highly-oriented pyrolytic graphite (HOPG) material was used for the target probe of the bunch-shape monitor at the front-end in the Japan Proton Accelerator Research Complex (J-PARC). Since the thermal conductivity of the HOPG is high, it is suitable to measure the beam profile under the condition of high heat loading. As an application of the HOPG, for example, the thin HOPG may be used as a substitutive material of the target wire for the transverse profile monitor such as the wire scanner monitor. The possibility of the HOPG target for the beam profile monitor is discussed from some results of the test experiment using the 3-MeV negative hydrogen ion beam at the test stand.
Lu, K.; Takamizawa, Hisashi; Li, Y.; Masaki, Koichi*; Takagoshi, Daiki*; Nagai, Masaki*; Nannichi, Takashi*; Murakami, Kenta*; Kanto, Yasuhiro*; Yashirodai, Kenji*; et al.
Mechanical Engineering Journal (Internet), 10(4), p.22-00484_1 - 22-00484_13, 2023/08
Miyazaki, Hidetoshi*; Akatsuka, Tatsuyoshi*; Kimura, Koji*; Egusa, Daisuke*; Sato, Yohei*; Itakura, Mitsuhiro; Takagi, Yasumasa*; Yasui, Akira*; Ozawa, Kenichi*; Mase, Kazuhiko*; et al.
Materials Transactions, 64(6), p.1194 - 1198, 2023/06
Times Cited Count:1 Percentile:22.95(Materials Science, Multidisciplinary)We investigated the electronic structure of the MgZnY alloy using hard and soft X-ray photoemission spectroscopy and electronic band structure calculations to understand the mechanism of the phase stability of this material. Electronic structure of the MgZnY alloy showed a semi-metallic electronic structure with a pseudo-gap at the Fermi level. The observed electronic structure of the MgZnY alloy suggests that the presence of a pseudogap structure is responsible for phase stability.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo
Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03
Times Cited Count:1 Percentile:0.00(Physics, Nuclear)A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.330 - 332, 2023/01
In the J-PARC linac, a new bunch-shape monitor (BSM) is developed to stably measure the high-intensity and low-energy H beam by improving the strength of the target probe for the heat loading. The new target probe is made of the graphite. The first measurement of the longitudinal beam profile has been realized with the BSM at the core region of the high-intensity beam. Since the beam profile can be measured with the new BSM at any transverse position thanks to the new target probe, we propose the advanced application of the beam diagnostics with the BSM. In this presentation, some new approaches of the beam diagnostics with the BSM; the transverse profile measurement using the secondary electrons and the beam current evaluation from the transverse profile measurement, are discussed beyond the original usage of the BSM.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Miyao, Tomoaki*; Miura, Akihiko; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.212 - 214, 2023/01
In the J-PARC linac, the bunch-shape monitor (BSM) is developed to precisely and rapidly measure the longitudinal beam profile at the front-end, towards the improvement of the beam matching. The graphite target having the good strength to the high-power beam, has been introduced in order to resist the heat loading of the high-intensity beam. The resolution and other uncertainties were evaluated for the BSM. The longitudinal Twiss parameters and emittance were measured using the BSM and the IMPACT, which was the 3D particle-in-cell simulation code. The precision of the longitudinal emittance measurement was improved, by implementing uncertainties related to the BSM into the calculation. In this presentation, we will report a series of the measurement result, the method of the beam diagnostics with the BSM at the front-end, and the comparison between the measurement and the beam simulation.
Hayashi, Koichi*; Lederer, M.*; Fukumoto, Yohei*; Goto, Masashi*; Yamamoto, Yuta*; Happo, Naohisa*; Harada, Masahide; Inamura, Yasuhiro; Oikawa, Kenichi; Oyama, Kenji*; et al.
Applied Physics Letters, 120(13), p.132101_1 - 132101_6, 2022/03
Times Cited Count:2 Percentile:22.29(Physics, Applied)Shibata, Takanori*; Hirano, Koichiro; Hirane, Tatsuya*; Shinto, Katsuhiro; Hayashi, Naoki; Oguri, Hidetomo
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.417 - 421, 2021/10
In J-PARC linac, the operation of an rf-driven high-intensity H ion source was initiated in 2014. For plasma ignition, the 2-MHz rf amplifier outputs the power of several tens kW. However the rf amplifier for the ion source and those for the accelerating cavities have not been synchronized. As a result, the wave hights in the beam waveforms were different in shot by shot. Therefore, we have developed an synchronization system between the rf system for the ion source and those for the cavity systems and succeeded the same wave hights in the waveforms.
Li, Y.; Katsumata, Genshichiro*; Masaki, Koichi; Hayashi, Shotaro*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*
Journal of Pressure Vessel Technology, 143(4), p.041501_1 - 041501_8, 2021/08
Times Cited Count:3 Percentile:23.50(Engineering, Mechanical)Saito, Wataru*; Hayashi, Kei*; Huang, Z.*; Sugimoto, Kazuya*; Oyama, Kenji*; Happo, Naohisa*; Harada, Masahide; Oikawa, Kenichi; Inamura, Yasuhiro; Hayashi, Koichi*; et al.
ACS Applied Energy Materials (Internet), 4(5), p.5123 - 5131, 2021/05
Times Cited Count:13 Percentile:62.19(Chemistry, Physical)Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
JPS Conference Proceedings (Internet), 33, p.011012_1 - 011012_6, 2021/03
The new bunch shape monitor (BSM) is required to measure the bunch size of the high-intensity H beam with 3 MeV at the front-end section in the J-PARC linac. The carbon-nano tube wire and the graphene stick are good candidates for the target wire of the BSM, because these materials have the enough strength to detect the high-intensity beam. However, since the negative high voltage of more than a few kV should be applied to the wire in the BSM, the suppression of the discharge is the challenge to realize the new BSM. After the high-voltage test to investigate the effect of the discharge from the wire, the detection of the signal from the BSM was successful at the beam core with the peak current of 55 mA using the graphene stick. The preliminary result of the bunch-size measurement is reported in this presentation.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.251 - 253, 2020/09
A bunch-shape monitor (BSM) in the low-energy region is being developed in the J-PARC linac to accelerate the high-intensity proton beam with the low emittance. A highly-oriented pyrolytic graphite (HOPG) was introduced as the target of the BSM to mitigate the thermal loading. The stable measurement of the BSM was realized thanks to the HOPG target, while the tungsten target was broken by the thermal loading from the high-intensity beam. However, since the longitudinal distribution measured with the BSM using the HOPG target was wider than the expected one, the improvement of tuning parameters is necessary for the BSM. The BSM consists of an electron multiplier, a bending magnet, and a radio-frequency deflector, which should be tuned appropriately. Behavior of these components were investigated and tuned. The longitudinal distribution measured with the BSM after the tuning was consistent with the expected one.
Uechi, Shoichi*; Oyama, Kenji*; Fukumoto, Yohei*; Kanazawa, Yuki*; Happo, Naohisa*; Harada, Masahide; Inamura, Yasuhiro; Oikawa, Kenichi; Matsuhra, Wataru*; Iga, Fumitoshi*; et al.
Physical Review B, 102(5), p.054104_1 - 054104_10, 2020/08
Times Cited Count:7 Percentile:38.96(Materials Science, Multidisciplinary)Hayashi, Kei*; Saito, Wataru*; Sugimoto, Kazuya*; Oyama, Kenji*; Hayashi, Koichi*; Happo, Naohisa*; Harada, Masahide; Oikawa, Kenichi; Inamura, Yasuhiro; Miyazaki, Yuzuru*
AIP Advances (Internet), 10(3), p.035115_1 - 035115_7, 2020/03
Times Cited Count:18 Percentile:71.62(Nanoscience & Nanotechnology)Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Moriya, Katsuhiro; Nemoto, Yasuo*; Oguri, Hidetomo
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.51 - 54, 2019/07
The longitudinal measurement and tuning at the beam transport after the RFQ are important to reduce the beam loss and the emittance growth in the J-PARC linac, when the high-intensity H beam of more than 60 mA is supplied. The new bunch shape monitor (BSM) using the carbon-nanotube (CNT) wire is necessary to measure the bunch shape of the high-intensity H beam with 3 MeV, because the CNT wire has a high-temperature tolerance and a small energy deposit. However, when the high voltage was applied to the CNT wire to extract the secondary electron derived, the discharge prevents the power supply from applying the voltage. Therefore, the discharge should be suppressed to measure the bunch shape with stability. Considering the characteristics of the CNT as the emitter, when the length of the CNT wire was short, the high voltage of -10 kV was applied to the CNT wire. The current status and future prospects of the BSM using the CNT wire are reported in this presentation.
Takahashi, Hiroki; Hayashi, Naoki; Nishiyama, Koichi*; Suzuki, Takahiro*; Ishiyama, Tatsuya*
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.271 - 274, 2019/07
In the event of an abnormal situation, a machine protection system (MPS) that immediately inhibits the beam is indispensable to minimize the damage and the radioactivation by beam loss. The existing MPS was developed during the construction period of the J-PARC. Then, the system has been working stably for more than ten years. On the other hand, since there are many MPS modules that have been used from the beginning of J-PARC operation, it is important to systematically proceed with updating (replacement) of modules as a measure against aging of MPS. However, the main components of the existing MPS module have been discontinued. Therefore, it is indispensable to redesign the MPS modules in consideration of improvement such as the compatibility with existing modules and the miniaturization. In this paper, the development status of the new module and the update plan of MPS for Linac and RCS are detailed.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Moriya, Katsuhiro; Oguri, Hidetomo; Futatsukawa, Kenta*; Miyao, Tomoaki*; Otani, Masashi*; Kosaka, Satoshi*; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2543 - 2546, 2019/06
A bunch shape monitor (BSM) is one of the important instruments to measure the longitudinal phase space distribution. For example in the J-PARC linac, three BSMs using the tungsten wire are installed at the ACS section to measure the bunch shapes between the accelerating cavities. However, this conventional BSM is hard to measure the bunch shape of H beam with 3 MeV at the beam transport between the RFQ and DTL sections, because the wire is broken around the center region of the beam. The new BSM using the carbon-nano-tube (CNT) wire is being developed to be able to measure the bunch shape of the H beam with 3 MeV. The careful attention should be paid to apply the high voltage of 10 kV to the CNT wire. The several measures are taken to suppress the discharge from the wire and operate the CNT-BSM. This presentation reports the current status of the development and future prospective for the CNT-BSM.
Hayashi, Koichi*; Oyama, Kenji*; Happo, Naohisa*; Matsushita, Tomohiro*; Hosokawa, Shinya*; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki*; Shishido, Toetsu*; Yubuta, Kunio*
Science Advances (Internet), 3(8), p.e1700294_1 - e1700294_7, 2017/08
Li, Y.; Katsumata, Genshichiro*; Masaki, Koichi*; Hayashi, Shotaro*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 10 Pages, 2017/07
In Japan, a PFM analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of Japanese reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock transients. In this study, as a part of the verification activities, a working group was established in Japan, with seven organizations from industry, universities and institutes voluntarily participating as members. The source program of PASCAL was released to the members of the working group. Through one year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group including the verification plan, approaches and results.