Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Detailed $$alpha$$-decay study of $$^{180}$$Tl

Andel, B.*; Andreyev, A. N.; Antalic, S.*; Barzakh, A.*; Bree, N.*; Cocolios, T. E.*; Comas, V. F.*; Diriken, J.*; Elseviers, J.*; Fedorov, D. V.*; et al.

Physical Review C, 96(5), p.054327_1 - 054327_11, 2017/12

 Times Cited Count:3 Percentile:32.39(Physics, Nuclear)

Journal Articles

$$beta$$-delayed fission of $$^{180}$$Tl

Elseviers, J.*; Andreyev, A. N.*; Huyse, M.*; Van Duppen, P.*; Antalic, S.*; Barzakh, A.*; Bree, N.*; Cocolios, T. E.*; Comas, V. F.*; Diriken, J.*; et al.

Physical Review C, 88(4), p.044321_1 - 044321_13, 2013/10

 Times Cited Count:34 Percentile:88.94(Physics, Nuclear)

Journal Articles

In-beam fissio study at JAEA for heavy element synthesis

Nishio, Katsuhisa; Ikezoe, Hiroshi; Hofmann, S.*; Ackermann, D.*; Aritomo, Yoshihiro*; Comas, V. F.*; D$"u$llmann, Ch. E.*; Heinz, S.*; Heredia, J. A.*; He${ss}$berger, F. P.*; et al.

AIP Conference Proceedings 1524, p.68 - 72, 2013/04

 Times Cited Count:0 Percentile:0.04

Journal Articles

The Reaction $$^{48}$$Ca + $$^{248}$$Cm $$rightarrow$$ $$^{296}$$116$$^{*}$$ studied at the GSI-SHIP

Hofmann, S.*; Heinz, S.*; Mann, R.*; Maurer, J.*; Khuyagbaatar, J.*; Ackermann, D.*; Antalic, S.*; Barth, B.*; Block, M.*; Burkhard, H. G.*; et al.

European Physical Journal A, 48(5), p.62_1 - 62_23, 2012/05

 Times Cited Count:136 Percentile:98.62(Physics, Nuclear)

Journal Articles

Investigation of fission properties and evaporation residue measurement in the reactions using $$^{238}$$U target nucleus

Nishio, Katsuhisa; Ikezoe, Hiroshi; Hofmann, S.*; Ackermann, D.*; Antalic, S.*; Aritomo, Yoshihiro; Comas, V. F.*; D$"u$llmann, Ch. E.*; Gorshkov, A.*; Graeger, R.*; et al.

EPJ Web of Conferences, 17, p.09005_1 - 09005_4, 2011/10

 Times Cited Count:1 Percentile:48.28

Journal Articles

New type of asymmetric fission in proton-rich nuclei

Andreyev, A. N.*; Elseviers, J.*; Huyse, M.*; Van Duppen, P.*; Antalic, S.*; Barzakh, A.*; Bree, N.*; Cocolios, T. E.*; Comas, V. F.*; Diriken, J.*; et al.

Physical Review Letters, 105(25), p.252502_1 - 252502_5, 2010/12

 Times Cited Count:166 Percentile:97.14(Physics, Multidisciplinary)

Journal Articles

The New isotope $$^{236}$$Cm and new data on $$^{233}$$Cm and $$^{237,238,240}$$Cf

Khuyagbaatar, J.*; He${ss}$berger, F. P.*; Hofmann, S.*; Ackermann, D.*; Comas, V. F.*; Heinz, S.*; Heredia, J. A.*; Kindler, B.*; Kojouharov, I.*; Lommel, B.*; et al.

European Physical Journal A, 46(1), p.59 - 67, 2010/10

 Times Cited Count:24 Percentile:80.08(Physics, Nuclear)

Journal Articles

Nuclear orientation in the reaction $$^{34}$$S+$$^{238}$$U and synthesis of the new isotope $$^{268}$$Hs

Nishio, Katsuhisa; Hofmann, S.*; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Aritomo, Yoshihiro; Comas, V. F.*; D$"u$llmann, Ch. E.*; Gorshkov, A.*; Graeger, R.*; et al.

Physical Review C, 82(2), p.024611_1 - 024611_9, 2010/08

 Times Cited Count:75 Percentile:96.19(Physics, Nuclear)

Journal Articles

Orientation effects of deformed $$^{238}$$U target nuclei on the fusion probability for the heavy element synthesis

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; et al.

Nuclear Physics A, 805(1-4), p.516 - 518, 2008/06

Journal Articles

Measurement of evaporation residue and fission cross sections of the reaction $$^{30}$$Si + $$^{238}$$U at subbarrier energies

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; et al.

Journal of Nuclear and Radiochemical Sciences, 8(2), p.73 - 78, 2007/10

Journal Articles

The Reaction $$^{48}$$Ca+$$^{238}$$U $$rightarrow$$ $$^{286}$$112$$^{*}$$ studied at the GSI-SHIP

Hofmann, S.*; Ackermann, D.*; Antalic, S.*; Burkhard, H. G.*; Comas, V. F.*; Dressler, R.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; He${ss}$berger, F. P.*; et al.

European Physical Journal A, 32(3), p.251 - 260, 2007/06

 Times Cited Count:244 Percentile:99.7(Physics, Nuclear)

Journal Articles

Measurement of evaporation residue cross-sections of the reaction $$^{30}$$Si + $$^{238}$$U at subbarrier energies

Nishio, Katsuhisa; Hofmann, S.*; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; Ikezoe, Hiroshi; et al.

AIP Conference Proceedings 891, p.71 - 79, 2007/03

Seaborgium isotopes were produced in the fusion reaction $$^{30}$$Si + $$^{238}$$U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E$$_{c.m.}$$= 144 MeV, three $$alpha$$ decay chains starting from $$^{263}$$Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E$$_{c.m.}$$= 133 MeV, three spontaneous fission events of a new isotope $$^{264}$$Sg were detected. The cross section was 10 pb. The half-life of $$^{264}$$Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of $$^{238}$$U was adopted to determine the capture cross section. The calculated capture cross section agrees well with the fission cross section of $$^{30}$$Si + $$^{238}$$U obtained at the JAEA tandem accelerator. The measured cross section of $$^{264}$$Sg at the sub-barrier energy is factor 10$$^{4}$$ larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of $$^{238}$$U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E$$_{c.m.}$$ = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of $$^{30}$$Si at the equotorial side of $$^{238}$$U has advantage on the fusion process.

Journal Articles

Measurement of evaporation residue cross-sections of the reaction $$^{30}$$Si+$$^{238}$$U at subbarrier energies

Nishio, Katsuhisa; Hofmann, S.*; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; Ikezoe, Hiroshi; et al.

European Physical Journal A, 29(3), p.281 - 287, 2006/09

 Times Cited Count:60 Percentile:93.82(Physics, Nuclear)

Seaborgium isotopes were produced in the fusion reaction $$^{30}$$Si + $$^{238}$$U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E$$_{c.m.}$$= 144 MeV, three $$alpha$$ decay chains starting from $$^{263}$$Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E$$_{c.m.}$$= 133 MeV, three spontaneous fission events of a new isotope $$^{264}$$Sg were detected. The cross section was 10 pb. The half-life of $$^{264}$$Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of $$^{238}$$U was adopted to determine the capture cross section. The calculaed capture cross section agrees well with the fission cross section of $$^{30}$$Si + $$^{238}$$U obtained at the JAEA tandem accelerator. The measured cross section of $$^{264}$$Sg at the sub-barrier energy is factor 10$$^{4}$$ larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of $$^{238}$$U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E$$_{c.m.}$$ = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of $$^{30}$$Si at the equatorial side of $$^{238}$$U has advantage on the fusion process.

Oral presentation

Production of Sg isotopes in the fusion reaction $$^{30}$$Si + $$^{238}$$U

Nishio, Katsuhisa; Mitsuoka, Shinichi; Ikezoe, Hiroshi; Hofmann, S.*; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; et al.

no journal, , 

Seaborgium isotopes were produced in the fusion reaction $$^{30}$$Si + $$^{238}$$U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E$$_{c.m.}$$= 144 MeV, three $$alpha$$ decay chains starting from $$^{263}$$Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E$$_{c.m.}$$= 133 MeV, three spontaneous fission events of a new isotope $$^{264}$$Sg were detected. The cross section was 10 pb. The half-life of $$^{264}$$Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of $$^{238}$$U was adopted to determine the capture cross section. The calculated capture cross section agrees well with the fission cross section of $$^{30}$$Si + $$^{238}$$U obtained at the JAEA tandem accelerator. The measured cross section of $$^{264}$$Sg at the sub-barrier energy is factor 10$$^{4}$$ larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of $$^{238}$$U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E$$_{c.m.}$$ = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of $$^{30}$$Si at the equotorial side of $$^{238}$$U has advantage on the fusion process.

Oral presentation

Orientation effects of deformed $$^{238}$$U target nuclei on the fusion probability for heavy element synthesis

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; He${ss}$berger, F. P.*; et al.

no journal, , 

Oral presentation

A New isotope $$^{268}$$Hs produced in the subbarrier fusion reaction of $$^{34}$$S+$$^{238}$$U

Nishio, Katsuhisa; Hofmann, S.*; He${ss}$berger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; D$"u$llmann, Ch. E.*; Gorshkov, A.*; Graeger, R.*; Heinz, S.*; et al.

no journal, , 

no abstracts in English

Oral presentation

Nuclear orientation in fusion and synthesis of heavy element at sub-barrier energy

Nishio, Katsuhisa; Ikezoe, Hiroshi; Hofmann, S.*; Ackermann, D.*; Antalic, S.*; Aritomo, Yoshihiro; Comas, V. F.*; D$"u$llmann, Ch. E.*; Gorshkov, A.*; Graeger, R.*; et al.

no journal, , 

Oral presentation

Fission of proton-rich nuclei

Nishio, Katsuhisa; Andreyev, A. N.*; Elseviers, J.*; Huyse, M.*; Van Duppen, P.*; Antalic, S.*; Barzakh, A.*; Bree, N.*; Cocolios, T. E.*; Comas, V. F.*; et al.

no journal, , 

no abstracts in English

Oral presentation

Experimental study on fusion-fission, quasi-fission and multi-nulceon transfer reaction at JAEA

Hirose, Kentaro; Nishio, Katsuhisa; Nishinaka, Ichiro; Makii, Hiroyuki; Ikezoe, Hiroshi*; Orlandi, R.; L$'e$guillon, R.; Tsukada, Kazuaki; Asai, Masato; Nagame, Yuichiro; et al.

no journal, , 

no abstracts in English

19 (Records 1-19 displayed on this page)
  • 1