Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron diffraction; A Primer

Dronskowski, R.*; Br$"u$ckel, T.*; Kohlmann, H.*; Avdeev, M.*; Houben, A.*; Meven, M.*; Hofmann, M.*; Kamiyama, Takashi*; Zobel, M.*; Schweika, W.*; et al.

Zeitschrift f$"u$r Kristallographie; Crystalline Materials, 28 Pages, 2024/00

Because of the neutron's special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for in situ and operando studies as well as for high-pressure experiments of today's materials. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.

Journal Articles

Phase-change materials; Vibrational softening upon crystallization and its impact on thermal properties

Matsunaga, Toshiyuki*; Yamada, Noboru*; Kojima, Rie*; Shamoto, Shinichi; Sato, Masugu*; Tanida, Hajime*; Uruga, Tomoya*; Kohara, Shinji*; Takata, Masaki*; Zalden, P.*; et al.

Advanced Functional Materials, 21(12), p.2232 - 2239, 2011/06

 Times Cited Count:116 Percentile:95.46(Chemistry, Multidisciplinary)

Thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization.

Journal Articles

Edge localized mode physics and operational aspects in tokamaks

B$'e$coulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An$'e$, J.-M.*; et al.

Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12

 Times Cited Count:84 Percentile:91.10(Physics, Fluids & Plasmas)

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1