Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Nakamura, Jumpei*; Shimomura, Koichiro*
Interactions (Internet), 245(1), p.25_1 - 25_7, 2024/12
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Takeshita, Soshi*; Tampo, Motonobu*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Miyake, Yasuhiro*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 333(7), p.3445 - 3450, 2024/07
Shimizu, Kazuyuki*; Nishimura, Katsuhiko*; Matsuda, Kenji*; Akamaru, Satoshi*; Nunomura, Norio*; Namiki, Takahiro*; Tsuchiya, Taiki*; Lee, S.*; Higemoto, Wataru; Tsuru, Tomohito; et al.
Scripta Materialia, 245, p.116051_1 - 116051_6, 2024/05
Times Cited Count:0 Percentile:0.02Hydrogen at the mass ppm level causes hydrogen embrittlement in metallic materials, but it is extremely difficult to experimentally elucidate the hydrogen trapping sites. We have taken advantage of the fact that positive muons can act as light isotopes of hydrogen to study the trapping state of hydrogen in matter. Zero-field muon spin relaxation experiments and the density functional theory (DFT) calculations for hydrogen trapping energy are carried out for AlMn. The DFT calculations for hydrogen in AlMn have found four possible trapping sites in which the hydrogen trapping energies are 0.168 (site 1), 0.312 (site 2), 0.364 (site 3), and 0.495 (site 4) in the unit of eV/atom. Temperature variations of the deduced dipole field width () indicated step-like changes at temperatures, 94, 193, and 236 K. Considering their site densities, the observed change temperatures are interpreted by trapping muons at sites 1, 3, and 4.
Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H.; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.
Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01
Times Cited Count:0 Percentile:0.05(Multidisciplinary Sciences)The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.
Ito, Takashi; Higemoto, Wataru; Shimomura, Koichiro*
Physical Review B, 108(22), p.224301_1 - 224301_11, 2023/12
Times Cited Count:1 Percentile:44.21(Materials Science, Multidisciplinary)Tsuru, Tomohito; Nishimura, Katsuhiko*; Matsuda, Kenji*; Nunomura, Norio*; Namiki, Takahiro*; Lee, S.*; Higemoto, Wataru; Matsuzaki, Teiichiro*; Yamaguchi, Masatake; Ebihara, Kenichi; et al.
Metallurgical and Materials Transactions A, 54(6), p.2374 - 2383, 2023/06
Times Cited Count:1 Percentile:44.33(Materials Science, Multidisciplinary)Although hydrogen embrittlement susceptibility of high-strength Al alloys is recognized as a critical issue in the practical use of Al alloys, identifying the hydrogen trapping or distribution has been challenging. In the present study, an effective approach based on experiment and simulation is proposed to explore the potential trap sites in Al alloys. Zero-field muon spin relaxation experiments were carried out for Al-0.5%Mg, Al-0.2%Cu, Al-0.15%Ti, Al-0.011%Ti, Al-0.28%V, and Al-0.015%V (at.%) in the temperature range from 5 to 300 K. The temperature variations of the dipole field widths have revealed three peaks for Al-0.5%Mg, four peaks for Al-0.2%Cu, three peaks for Al-0.011%Ti and Al-0.015%V. Atomic configurations of the muon trapping sites corresponding to the observed peaks are well assigned using the first-principles calculations for the trap energies of hydrogen around a solute and solute-vacancy pair. The extracted linear relationship between the muon peak temperature and the trap energy enables us to explore the potential alloying elements and their complex that have strong binding energies with hydrogen in Al alloys.
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.
Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03
Times Cited Count:0 Percentile:0.21(Physics, Applied)Higemoto, Wataru; Sato, Kazuhiko*; Ito, Takashi; Oishi, Kazuki*; Saiga, Yuta*; Kosaka, Masashi*; Matsubayashi, Kazuyuki*; Uwatoko, Yoshiya*
Journal of Physics; Conference Series, 2462, p.012039_1 - 012039_5, 2023/03
Times Cited Count:0 Percentile:0.21(Physics, Applied)The cubic compound YbCoZn has huge electronic specific heat coefficient and its ground state could be located in the vicinity of the quantum critical point. Indeed, a magnetic long-range order was observed under pressure above 1-2 GPa. To investigate magnetic ground state, we have carried out muon spin relaxation measurements and confirm non-magnetic ground state with fluctuating tiny magnetic moment.
Higemoto, Wataru; Yokoyama, Makoto*; Ito, Takashi; Suzuki, Taiga*; Raymond, S.*; Yanase, Yoichi*
Proceedings of the National Academy of Sciences of the United States of America, 119(49), p.e2209549119_1 - e2209549119_6, 2022/11
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)no abstracts in English
Sheng, Q.*; Kaneko, Tatsuya*; Yamakawa, Kohtaro*; Guguchia, Z.*; Gong, Z.*; Zhao, G.*; Dai, G.*; Jin, C.*; Guo, S.*; Fu, L.*; et al.
Physical Review Research (Internet), 4(3), p.033172_1 - 033172_14, 2022/09
Tripathi, R.*; Adroja, D. T.*; Ritter, C.*; Sharma, S.*; Yang, C.*; Hillier, A. D.*; Koza, M. M.*; Demmel, F.*; Sundaresan, A.*; Langridge, S.*; et al.
Physical Review B, 106(6), p.064436_1 - 064436_17, 2022/08
Times Cited Count:2 Percentile:30.40(Materials Science, Multidisciplinary)Fittipaldi, R.*; Hartmann, R.*; Mercaldo, M. T.*; Komori, Sachio*; Bjrlig, A.*; Higemoto, Wataru; Maeno, Yoshiteru*; Di Bernardo, A.*; 18 of others*
Nature Communications (Internet), 12, p.5792_1 - 5792_9, 2021/10
Times Cited Count:11 Percentile:65.28(Multidisciplinary Sciences)The layered oxide perovskite SrRuO, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in SrRuO is still ongoing, a deeper understanding of the SrRuO normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in SrRuO at an onset temperature higher than 50 K. Our observations set a reference for the discovery of the same magnetic phase in other materials.
Higa, Nonoka*; Ito, Takashi; Yogi, Mamoru*; Hattori, Taisuke; Sakai, Hironori; Kambe, Shinsaku; Guguchia, Z.*; Higemoto, Wataru; Nakashima, Miho*; Homma, Yoshiya*; et al.
Physical Review B, 104(4), p.045145_1 - 045145_7, 2021/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Suzuki, Shintaro*; Takubo, Ko*; Kuga, Kentaro*; Higemoto, Wataru; Ito, Takashi; Tomita, Takahiro*; Shimura, Yasumichi*; Matsumoto, Yosuke*; Bareille, C.*; Wadachi, Hiroki*; et al.
Physical Review Research (Internet), 3(2), p.023140_1 - 023140_12, 2021/05
We report our experimental discovery of the transition temperature reaching 20 K in a Yb-based compound at ambient pressure. The Mn substitution at the Al site in an intermediate valence state of -YbAlB not only induces antiferromagnetic transition at a record high temperature of 20 K but also transforms the heavy-fermion liquid state in -YbAlB into a highly resistive metallic state proximate to a Kondo insulator.
Sugiyama, Jun; Higemoto, Wataru; Andreica, D.*; Forslund, O. K.*; Nocerino, E.*; Mnsson, M.*; Sassa, Y.*; Gupta, R.*; Khasanov, R.*; Ota, Hiroto*; et al.
Physical Review B, 103(10), p.104418_1 - 104418_10, 2021/03
Times Cited Count:8 Percentile:59.71(Materials Science, Multidisciplinary)The magnetic nature of a quasi-one-dimensional compound, BaVSe, has been investigated with positive muon spin rotation and relaxation measurements at ambient and high pressures. At ambient pressure, the spectrum recorded under zero external magnetic field exhibited a clear oscillation below the Curie temperature due to the formation of quasistatic ferromagnetic order. As pressure increased from ambient pressure, was found to decrease slightly up to about 1.5 GPa, at which point started to increase rapidly with the further increase of the pressure. Based on a strong ferromagnetic interaction along the -axis, the result revealed that there are two magnetic interactions in the ab-plane.
Ito, Takashi; Higemoto, Wataru; Shimomura, Koichiro*
Journal of the Physical Society of Japan, 89(5), p.051007_1 - 051007_8, 2020/05
Times Cited Count:5 Percentile:43.67(Physics, Multidisciplinary)Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Shimomura, Koichiro*
Applied Physics Letters, 115(19), p.192103_1 - 192103_4, 2019/11
Times Cited Count:8 Percentile:40.86(Physics, Applied)Pant, A. D.*; Higemoto, Wataru; Miyake, Yasuhiro; 8 of others*
Nuclear Instruments and Methods in Physics Research A, 929, p.129 - 133, 2019/06
Times Cited Count:5 Percentile:47.59(Instruments & Instrumentation)We have been developing an ultra slow muon microscope, at J-PARC. We performed Monte Carlo simulations, the results of which pointed out the significant effect of a stray magnetic field at the muonium chamber on the beam profile at sample position. To minimize this effect, we steered the beam using imbalance tuning of electric quadrupoles. This paper presents the simulation study of beam transportation, optimization, and characterization in terms of beam size, time, and energy distribution at sample position in one of the experimental areas, namely, U1A.
Yoshida, Go*; Ninomiya, Kazuhiko*; Inagaki, Makoto*; Higemoto, Wataru; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Miura, Taichi*; Kubo, Kenya*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 320, p.283 - 289, 2019/05
Times Cited Count:4 Percentile:40.00(Chemistry, Analytical)The role of valence electrons for the muon capture process by molecules is experimentally investigated with the aid of cascade calculations. Low-momentum muons are introduced to gas targets below atmospheric pressure. The initial states of captured muons are determined from the measured muonic X-ray structure of the Lyman and Balmer series. We propose that the lone pair electrons in the carbon atom of CO significantly contribute to the capture of a muon with large angular momenta.