Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 42

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress and status of the gyrotron development for the JT-60SA ECH/CD system

Kobayashi, Takayuki; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Ikeda, Ryosuke; Oda, Yasuhisa; Wada, Kenji; Hinata, Jun; Yokokura, Kenji; Hoshino, Katsumichi; et al.

Proceedings of 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015) (USB Flash Drive), 3 Pages, 2015/08

A gyrotron for electron cyclotron heating and current drive (ECH/CD) has been developed for JT-60SA (Super-Advanced). In high-power, long-pulse operations, oscillations of 1 MW/100 s have been demonstrated at both 110 GHz and 138 GHz, for the first time. These results fully satisfied the requirements for JT-60SA. Moreover, it was experimentally shown that the higher power operation at each frequency is expected to be acceptable for this gyrotron from the viewpoint of heat load at the cavity resonator, collector, and stray radiation absorbers. An oscillation at 82 GHz, which is an additional frequency, has been demonstrated up to 2 s at the output power of 0.4 MW, so far. High power experiments toward higher power of 1.5 MW (110/138 GHz) and 1 MW (82 GHz) are ongoing.

Journal Articles

Gyrotron development for high-power, long-pulse electron cyclotron heating and current drive at two frequencies in JT-60SA and its extension toward operation at three frequencies

Kobayashi, Takayuki; Moriyama, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; et al.

Nuclear Fusion, 55(6), p.063008_1 - 063008_8, 2015/06

 Times Cited Count:15 Percentile:19.21(Physics, Fluids & Plasmas)

A gyrotron enabling high-power, long-pulse oscillations at both 110 GHz and 138 GHz has been developed for electron cyclotron heating (ECH) and current drive (CD) in JT-60SA. Oscillations of 1 MW for 100 s have been demonstrated at both frequencies, for the first time as a gyrotron operating at two frequencies. The optimization of the anode voltage, or the electron pitch factor, using a triode gun was a key to obtain high power and high efficiency at two frequencies. It was also confirmed that the internal losses in the gyrotron were sufficiently low for expected long pulse operation at the higher power level of $$sim$$1.5 MW. Another important result is that an oscillation at 82 GHz, which enables to use fundamental harmonic waves in JT-60SA while the other two frequencies are used as second harmonics waves, was demonstrated up to 0.4 MW for 2 s. These results of the gyrotron development significantly contribute to enhancing operation regime of the ECH/CD system in JT-60SA.

Journal Articles

Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz

Kobayashi, Takayuki; Moriyama, Shinichi; Isayama, Akihiko; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

EPJ Web of Conferences (Internet), 87, p.04008_1 - 04008_5, 2015/03

 Times Cited Count:3 Percentile:16.8

A dual-frequency gyrotron, which can generate 110 GHz and 138 GHz waves independently, is being developed in JAEA to enable electron cyclotron heating (ECH) and current drive (ECCD) in a wider range of plasma discharge conditions of JT-60SA. Operation for the gyrotron conditioning and parameter optimization toward 1 MW for 100 s, which is the target output power and pulse length for JT-60SA, is in progress without problems. Oscillations of 1 MW for 10 s and 0.51 MW for 198 s were obtained, so far, at both frequencies. In addition, an oscillation (0.3 MW for 20 ms) at 82 GHz was demonstrated as an additional frequency of the dual-frequency gyrotron which shows a possibility of the use of fundamental harmonic wave in JT-60SA.

JAEA Reports

Development of instrument to measure transmission power density distribution using dielectric disk in millimeter waveguide

Yokokura, Kenji; Moriyama, Shinichi; Kobayashi, Takayuki; Hiranai, Shinichi; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu; Hoshino, Katsumichi; et al.

JAEA-Technology 2014-002, 64 Pages, 2014/03

JAEA-Technology-2014-002.pdf:6.83MB

A new instrument has been developed to measure spatial distribution of power density and total power of the millimeter wave, by measuring temperature rise of dielectric material inserted in the waveguide. For a measurement, a dielectric disk with thermally insulated support is inserted into the few millimeters gap in the waveguide. The disk is heated by the millimeter wave pulse for 0.1$$sim$$0.2 s, and immediately after the pulse, it is pulled up and its temperature distribution is measured by an infrared camera to estimate the spatial power density distribution of the millimeter wave. In the other hand, total transmission power is estimated by the disk temperature reached equilibrium. In the measurement test, deformation of the power density distribution was successfully detected when the mirror angle was intentionally changed in the matching optics unit (MOU) at the waveguide input from the gyrotron. The test result shows that the instrument is effective for both adjustment of MOU without opening the vacuum boundary and to detect any abnormal transmission during operation of the ECH system. The test also shows high reliability of the instrument which stands with 1 MW high power transmission without any arcing or pressure rise in vacuum region. The instrument will be contributed to keep good condition of high power long pulse ECH system by detecting abnormal transmission in the waveguide in operation without open vacuum boundary.

Journal Articles

Development of a linear motion antenna for the JT-60SA ECRF system

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; et al.

Fusion Engineering and Design, 88(6-8), p.935 - 939, 2013/10

 Times Cited Count:4 Percentile:56.81(Nuclear Science & Technology)

An antenna having a first mirror driven in the linear motion (LM) and a fixed second mirror was proposed for electron cyclotron range of frequency (ECRF) heating and current drive system, to minimize the risk of cooling-water-leakage. Basic mechanical feasibilities of the bellows covering the movable structures of the antenna were previously investigated using a mock-up. This time, a support structure of the shaft has been designed using a metallic sliding bearing with solid lubricant. The sliding bearing can support combination of linear and rotational motions while a ball bearing supports either linear or rotational motion. We have newly installed the sliding bearing into the mock-up. A vacuum pumping test has been carried out paying attention to the influence of the solid lubricant by mass analysis. To design the LM antenna for JT-60SA in detail, heating and current drive characteristics for typical experimental scenarios of JT-60SA has been investigated by calculation.

Journal Articles

Dual frequency ECRF system development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

Fusion Science and Technology, 63(1T), p.160 - 163, 2013/05

 Times Cited Count:6 Percentile:43.43(Nuclear Science & Technology)

A dual frequency electron cyclotron range of frequency system has been developed for JT-60SA, by which a second frequency (135 $$sim$$ 140 GHz) is generated in addition to the first frequency of 110 GHz. A development of a dual frequency gyrotron is a key to realize the dual frequency system. The second frequency was chosen to be 138 GHz from the above frequency range from the viewpoint of gyrotron design. In order to realize high-power ($$>$$ 1 MW) and long-pulse operation for both frequencies, we designed main components of the gyrotron (the diamond window, cavity resonator and quasi-optical mode converter). We found the optimum parameter set from the parameters of these components, which has discrete characteristics. It was confirmed that the output power higher than 1 MW is obtained for both frequencies as a result of numerical design. Based on the above design, a dual frequency gyrotron was newly fabricated. In the conditioning operation, an output power was obtained as we expected.

Journal Articles

Dual frequency gyrotron development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012) (USB Flash Drive), 2 Pages, 2012/09

A new dual frequency (110 GHz and 138 GHz) gyrotron development began for JT-60SA. An output power and efficiency higher than 1 MW and 30% with a peak heat load lower than 1.4 kW/cm$$^{2}$$ were obtained for both frequencies in calculation. High mode conversion efficiencies of the quasioptical mode converter (96.8% for 110 GHz and 98.3% for 138 GHz), which is higher than the previously developed 110 GHz long pulse gyrotron (96.5%), was obtained. The new gyrotron was fabricated and conditioning operation has been started from the middle of June 2012. The gyrotron output power of approximately 200 kW was obtained, so far, as we expected in the design of the gyrotron at low beam current of 10 A and low beam voltage of 75 kV.

Journal Articles

Recent results from the development of the electron cyclotron heating system for JT-60SA toward high-power long-pulse operations

Isayama, Akihiko; Kobayashi, Takayuki; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Hinata, Jun; et al.

Plasma and Fusion Research (Internet), 7(Sp.1), p.2405029_1 - 2405029_5, 2012/05

no abstracts in English

Journal Articles

Progress in ECRF antenna development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Hasegawa, Koichi; Suzuki, Sadaaki; Hiranai, Shinichi; Sato, Fumiaki; Wada, Kenji; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; et al.

Fusion Engineering and Design, 86(6-8), p.763 - 767, 2011/10

 Times Cited Count:6 Percentile:46.49(Nuclear Science & Technology)

Progress of antenna development of the Electron Cyclotron Range of Frequency system for JT-60 SA is presented. Capability of pulse length of 100 s, which requires active cooling for mirrors, and flexibility of beam injection angles in both poloidal and toroidal directions are required for the antenna with high reliability. Mechanical and structural design works of the launcher (antenna and its support with steering structure) based on a linear motion antenna concept are in progress. The key component is a long-stroke bellows which enables to alter poloidal injection angle and a bellows which enables to alter toroidal injection angle. Using a newly fabricated mock-up of the steering structure, it was confirmed that the antenna was mechanically realized for poloidal and toroidal injection angle ranges of -10 to +45$$^{circ}$$ and -15 to +15$$^{circ}$$, respectively. Those angles are consistent with angles required in JT-60SA. The results of thermal and structural analyses are also presented.

Journal Articles

Progress of high-power and long-pulse ECRF system development in JT-60

Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Sato, Fumiaki; et al.

Nuclear Fusion, 51(10), p.103037_1 - 103037_10, 2011/10

 Times Cited Count:15 Percentile:35.61(Physics, Fluids & Plasmas)

A new gyrotron operation technique to increase oscillation efficiency was developed on the JT 60 ECRF system. The electron pitch factor was optimized by controlling anode voltage within 0.1 s after the start of the operation. By applying this technique, the gyrotron output power of 1.5 MW for 4 s was recorded, for the first time. The reduced collector heat load at 1.5 MW operations was reduced by 20% and it will be acceptable for longer pulse operation. A new gyrotron with an improved mode converter was developed in order to demonstrate reduction of the stray radiation which had limited the pulse length. The stray radiation was reduced to 1/3 of that of the original gyrotron. A conditioning operation of the improved gyrotron is proceeding up to 31 s at 1 MW. These progresses significantly contribute to enhancing the high power and long pulse capability of the ECRF system toward JT 60SA.

Journal Articles

Development of the long-pulse ECRF system for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Fasel, D.*; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.363 - 368, 2010/08

Improvements are required for expanding the pulse length of the JT-60 ECRF system (5s) for JT-60SA (100s). Newly developed power supplies will be fabricated and installed by EU. The conditioning operation of an improved gyrotron equipping a newly designed mode convertor has been started. The mode convertor will reduce heat flux on the internal components and therefore expected to enable long pulse operation at 1 MW. Pre-programmed and/or feedback control of the heater current and anode voltage, which was successfully demonstrated in JT-60U, will be key techniques because the beam current decreases during a shot. The evacuated transmission lines have a capability of 1 MW per line. Since maintenance of the components in the vacuum vessel is difficult, a linear motion antenna concept was proposed to reduce risks of water leakage and fault of the driving mechanism in the vacuum vessel. The detailed design and the low power test of a mock-up antenna have been started.

Oral presentation

Development of 100-second ECRF system for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

The electron cyclotron range of frequency (ECRF) system (3 MW $$times$$ 5s at 110 GHz with 4 gyrotrons) of JT-60U will be upgrade to the system having 9 gyrotrons (7 MW $$times$$ 100s) for JT-60SA (super advanced). As heat removal from the mirrors is essential for a long pulse antenna, a new concept with a mirror driven in the linear motion which eliminates the flexible tube for coolant supply is under development. The design study featuring beam profile calculation showed feasibility of the antenna in the 0.48 m $$times$$ 0.48 m port. The low power rf test with simple mockup antenna has just been begun. Aging of the gyrotron with improved mode converter was started in the end of 2008, aiming at 1 MW, 100s oscillation. Because the current capacity of the present high voltage power supply is not enough to realize 100s oscillation, LHRF power supply having twice larger current capacity is connected to the gyrotron in March 2009. The gyrotron aging will be started soon again.

Oral presentation

High power operation at 1.5 MW using the JT-60 gyrotron

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Terakado, Masayuki; Shimono, Mitsugu; Igarashi, Koichi; Hinata, Jun; Kajiwara, Ken; Kasugai, Atsushi; Sakamoto, Keishi; et al.

no journal, , 

High power gyrotron operation at an output power of 1.5 MW was carried out using the JT-60 gyrotron. Pulse length had been limited to 100 ms at an output power of well exceeding 1 MW. An oscillation at 1.5 MW with a pulse length of 1 s was demonstrated, for the first time, in 2007 by the JT-60 gyrotron. We evaluated the heat load on each component of the gyrotron and it was shown that the gyrotron could be operated at 1.5 MW with the pulse length of up to 3 s from the view point of the heat load. In 2009, we tried the operation at the output power of 1.5 MW aiming at the demonstration of the pulse length of 3 s or longer. An operation technique, by which an anode voltage was changed only at the beginning of the pulse, was developed and it resulted in obtaining relatively higher oscillation efficiency. The oscillation at 1.5 MW for 4 s was demonstrated for the first time.

Oral presentation

Development of ECRF system toward steady-state operation in JT 60SA

Isayama, Akihiko; Kobayashi, Takayuki; Moriyama, Shinichi; Sawahata, Masayuki; Suzuki, Sadaaki; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of long-pulse high-power gyrotron for JT-60SA

Isayama, Akihiko; Kobayashi, Takayuki; Moriyama, Shinichi; Sawahata, Masayuki; Suzuki, Sadaaki; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

no abstracts in English

Oral presentation

Status of design and development of ECRF system in JT-60SA

Moriyama, Shinichi; Isayama, Akihiko; Kobayashi, Takayuki; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Hasegawa, Koichi; Shimono, Mitsugu; Yokokura, Kenji; et al.

no journal, , 

no abstracts in English

Oral presentation

Design study of antenna and transmission line of JT-60SA electron cyclotron heating system using 3D-CAD

Wada, Kenji; Kobayashi, Takayuki; Isayama, Akihiko; Hasegawa, Koichi; Sato, Fumiaki; Yokokura, Kenji; Suzuki, Sadaaki; Shibayama, Minoru; Hiranai, Shinichi; Shimono, Mitsugu; et al.

no journal, , 

no abstracts in English

Oral presentation

Operation experience and development status of ECRF system in JT-60U

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

Full specification of 4 MW for 5s was achieved by simultaneous operation of 4 gyrotrons, and 3 MW was injected to the JT-60U plasma by the completion of experiments in August 2008. In the inspection of the antenna after the operation, there were no large damages but the color of the mirror surfaces were slightly changed and some evidences of arcing were found. In the statistical analysis of operation, the rate of successful shots to the plasma was higher than 85% in the last 3 years. Development of long-pulse gyrotron with improved mode converter is on going and the conditioning was started in the end of 2008 aiming at 1 MW, 100s for JT-60SA. It was confirmed that the diffraction loss was remarkably decreased and the pulse length reached 1 MW 17s so far. A new operation technique of active anode voltage control was developed to obtain high efficiency, and the pulse length for 1.5 MW oscillation was extended from 1s to 4s.

Oral presentation

Operational experience on ECRF system in JT-60U and development for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

As a result of inspection of the ECRF antennas after the JT-60U operation, no large damages were found on them although the color of the mirror surfaces were slightly changed probably due to coating of thin film and some evidences of arcing were found. In the statistical analysis on the 9-year operation of the ECRF system, the success rate, which is defined as the ratio of actual injection time to preprogrammed one was higher than 0.85 in the last 3 years of the operation in average of 4 lines. To meet the long-pulse requirement of JT-60SA, development of long-pulse gyrotron with improved mode converter is on going aiming at 1 MW, 100 s. It was confirmed that the diffraction loss was remarkably decreased and the temperature of the DC break cooling water, which limited the pulse length, was saturated at about half of that before the improvement. As the result, the pulse length reached 17 s at 1 MW, and 30 s at 0.6 MW (18 MJ) recently, and further conditioning will be continued.

Oral presentation

Development of ECRF heating and current drive system for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; et al.

no journal, , 

no abstracts in English

42 (Records 1-20 displayed on this page)