Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ono, Hitomi*; Takenaka, Keisuke*; Kita, Tomoaki*; Taniguchi, Masashi*; Matsumura, Daiju; Nishihata, Yasuo; Hino, Ryutaro; Reinecke, E.-A.*; Takase, Kazuyuki*; Tanaka, Hirohisa*
E-Journal of Advanced Maintenance (Internet), 11(1), p.40 - 45, 2019/05
Tobita, Toru; Nakagawa, Sho*; Takeuchi, Tomoaki; Suzuki, Masahide; Ishikawa, Norito; Chimi, Yasuhiro; Saito, Yuichi; Soneda, Naoki*; Nishida, Kenji*; Ishino, Shiori*; et al.
Journal of Nuclear Materials, 452(1-3), p.241 - 247, 2014/09
Times Cited Count:14 Percentile:75.23(Materials Science, Multidisciplinary)Three kinds of Fe-based model alloys, Fe-0.018 atomic percent (at.%) Cu, Fe-0.53at.%Cu, and Fe-1.06at.%Cu were irradiated with 2 MeV electrons up to the dose of 210
dpa at 250
C. After the irradiation, the increase in Vickers hardness and the decrease in electrical resistivity were observed. The increase in hardness by electron irradiation is proportional to the product of the Cu contents and the square root of the electron dose. The decrease in electrical resistivity is proportional to the product of the square of Cu contents and the electron dose. Cu clustering in the materials with electron irradiation and thermal aging was observed by means of the three dimensional atom probes (3D-AP). The change in Vickers hardness and electrical resistivity is well correlated with the volume fraction of Cu clusters.
Nobuta, Yuji*; Yamauchi, Yuji*; Hino, Tomoaki*; Akamaru, Satoshi*; Hatano, Yuji*; Matsuyama, Masao*; Suzuki, Satoshi; Akiba, Masato
Fusion Engineering and Design, 87(7-8), p.1070 - 1073, 2012/08
Times Cited Count:2 Percentile:18.82(Nuclear Science & Technology)Mitsuda, Tomoaki*; Kobayashi, Ippei*; Kosugi, Shinya*; Fujita, Naoki*; Saito, Yuichi; Hori, Fuminobu*; Semboshi, Satoshi*; Kaneno, Yasuyuki*; Nishida, Kenji*; Soneda, Naoki*; et al.
Nuclear Instruments and Methods in Physics Research B, 272, p.49 - 52, 2012/02
Times Cited Count:7 Percentile:50.34(Instruments & Instrumentation)Nobuta, Yuji*; Yokoyama, Kenji; Kanazawa, Jun*; Yamauchi, Yuji*; Hino, Tomoaki*; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato
Journal of Nuclear Materials, 417(1-3), p.607 - 611, 2011/10
Times Cited Count:2 Percentile:19.12(Materials Science, Multidisciplinary)Hino, Tomoaki*; Shibata, Hironobu*; Yamauchi, Yuji*; Nobuta, Yuji*; Suzuki, Satoshi; Akiba, Masato
Journal of Nuclear Materials, 417(1-3), p.713 - 717, 2011/10
Times Cited Count:8 Percentile:55.28(Materials Science, Multidisciplinary)Ito, Tatsuya*; Yamauchi, Yuji*; Hino, Tomoaki*; Shibayama, Tamaki*; Nobuta, Yuji*; Ezato, Koichiro; Suzuki, Satoshi; Akiba, Masato
Journal of Nuclear Materials, 417(1-3), p.1147 - 1149, 2011/10
Times Cited Count:12 Percentile:68.97(Materials Science, Multidisciplinary)Ueda, Yoshio*; Hino, Tomoaki*; Ono, Noriyasu*; Takagi, Ikuji*; Nakano, Tomohide; Tanabe, Tetsuo*; Kajita, Shin*; Fukumoto, Masakatsu
Purazuma, Kaku Yugo Gakkai-Shi, 85(10), p.684 - 694, 2009/10
Relation between deuterium retention, wall temperature and hydrocarbon generation in 30-s H-mode discharges of JT-60U was described. In discharges with a density below 50% of the Greenwald density, the trend of the deuterium retention against pulse number depended on the wall temperature: with increasing pulse number, the deuterium retention decreased at a wall temperature of 300 C, decreased gradually at 150
C, and remained constant at 80
C. In contrast, in discharges with high densities above 70% of the Greenwald density, the deuterium retention increased with increasing pulse number at the above three wall temperatures. In the high density discharges, the deuterium retention flux increased with increasing hydrocarbon generation flux, suggesting that the deuterium is retained in co-deposition layers of carbon, which originated from the hydrocarbons.
Nobuta, Yuji*; Arai, Takashi; Yagyu, Junichi; Masaki, Kei; Sato, Masayasu; Tanabe, Tetsuo*; Yamauchi, Yuji*; Hino, Tomoaki*
Journal of Nuclear Materials, 390-391, p.643 - 646, 2009/06
Times Cited Count:5 Percentile:37.06(Materials Science, Multidisciplinary)The hydrogen and deuterium retention in gap side surfaces of the first wall tiles exposed to DD and HH discharges in JT-60U were investigated. The hydrogen and deuterium retention and boron deposition increased with the gap width. The depth profile of deuterium was very similar to that of boron, indicating that deuterium was incorporated with boron. Thick carbon deposition layer ( 1e
m) was observed in the gap of inboard tile and the atomic ratio in (H+D)/C at the carbon layer was estimated to be approximately 0.15. This value is higher than that observed in the divertor region. In this study, the H+D amount in gap side surfaces of the first wall was of the order of 1e23
1e24m
.
Ashikawa, Naoko*; Kizu, Kaname; Yagyu, Junichi; Nakahata, Toshihiko*; Nobuta, Yuji; Nishimura, Kiyohiko*; Yoshikawa, Akira*; Ishimoto, Yuki*; Oya, Yasuhisa*; Okuno, Kenji*; et al.
Journal of Nuclear Materials, 363-365, p.1352 - 1357, 2007/06
Times Cited Count:10 Percentile:59.36(Materials Science, Multidisciplinary)no abstracts in English
Tsuzuki, Kazuhiro; Kamiya, Kensaku; Shinohara, Koji; Bakhtiari, M.*; Ogawa, Hiroaki; Kurita, Genichi; Takechi, Manabu; Kasai, Satoshi; Sato, Masayasu; Kawashima, Hisato; et al.
Nuclear Fusion, 46(11), p.966 - 971, 2006/11
Times Cited Count:16 Percentile:49.44(Physics, Fluids & Plasmas)no abstracts in English
Tsuzuki, Kazuhiro*; Kimura, Haruyuki; Kusama, Yoshinori; Sato, Masayasu; Kawashima, Hisato; Kamiya, Kensaku; Shinohara, Koji; Ogawa, Hiroaki; Uehara, Kazuya; Kurita, Genichi; et al.
Fusion Science and Technology, 49(2), p.197 - 208, 2006/02
Times Cited Count:11 Percentile:61.34(Nuclear Science & Technology)no abstracts in English
Oya, Yasuhisa*; Hirohata, Yuko*; Tanabe, Tetsuo*; Shibahara, Takahiro*; Kimura, Hiromi*; Oyaizu, Makoto*; Arai, Takashi; Masaki, Kei; Goto, Yoshitaka*; Okuno, Kenji*; et al.
Fusion Engineering and Design, 75-79, p.945 - 949, 2005/11
Times Cited Count:9 Percentile:54.12(Nuclear Science & Technology)no abstracts in English
Hirohata, Yuko*; Shibahara, Takahiro*; Tanabe, Tetsuo*; Arai, Takashi; Goto, Yoshitaka*; Oya, Yasuhisa*; Yoshida, Hajime*; Morimoto, Yasutomi*; Yagyu, Junichi; Masaki, Kei; et al.
Journal of Nuclear Materials, 337-339, p.609 - 613, 2005/03
Times Cited Count:13 Percentile:66.57(Materials Science, Multidisciplinary)no abstracts in English
Ogawa, Hiroaki; Yamauchi, Yuji*; Tsuzuki, Kazuhiro; Kawashima, Hisato; Sato, Masayasu; Shinohara, Koji; Kamiya, Kensaku; Kasai, Satoshi; Kusama, Yoshinori; Yamaguchi, Kaoru*; et al.
Journal of Nuclear Materials, 329-333(Part1), p.678 - 682, 2004/08
Times Cited Count:4 Percentile:29.92(Materials Science, Multidisciplinary)no abstracts in English
Tsuzuki, Kazuhiro; Shinohara, Koji; Kamiya, Kensaku; Kawashima, Hisato; Sato, Masayasu; Kurita, Genichi; Bakhtiari, M.; Ogawa, Hiroaki; Hoshino, Katsumichi; Kasai, Satoshi; et al.
Journal of Nuclear Materials, 329-333(1), p.721 - 725, 2004/08
Times Cited Count:7 Percentile:45.82(Materials Science, Multidisciplinary)no abstracts in English
Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.
Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02
Times Cited Count:2 Percentile:6.59(Physics, Fluids & Plasmas)The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.
Oya, Yasuhisa*; Morimoto, Yasutomi*; Oyaizu, Makoto*; Hirohata, Yuko*; Yagyu, Junichi; Miyo, Yasuhiko; Goto, Yoshitaka*; Sugiyama, Kazuyoshi*; Okuno, Kenji*; Miya, Naoyuki; et al.
Physica Scripta, T108, p.57 - 62, 2004/00
no abstracts in English
Tsuzuki, Kazuhiro; Kimura, Haruyuki; Kawashima, Hisato; Sato, Masayasu; Kamiya, Kensaku; Shinohara, Koji; Ogawa, Hiroaki; Hoshino, Katsumichi; Bakhtiari, M.; Kasai, Satoshi; et al.
Nuclear Fusion, 43(10), p.1288 - 1293, 2003/10
Times Cited Count:39 Percentile:74.95(Physics, Fluids & Plasmas)no abstracts in English
Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Chujo, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.
Nuclear Fusion, 43(7), p.606 - 613, 2003/07
no abstracts in English