Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Microstructural development and radiation hardening of neutron irradiated Mo-Re alloys

Nemoto, Yoshiyuki; Hasegawa, Akira*; Sato, Manabu*; Abe, Katsunori*; Hiraoka, Yutaka*

Journal of Nuclear Materials, 324(1), p.62 - 70, 2004/01

 Times Cited Count:38 Percentile:90.12(Materials Science, Multidisciplinary)

In this study, stress-relieved specimens and recrystallized specimens of pure Mo and Mo-Re alloys (Re content=2,4,5,10,13 and 41wt%) were neutron irradiated up to 20dpa at various temperatures (681-1072K). On microstructure observation, sigma phase and chi phase precipitates were observed in all irradiated Mo-Re alloys. Voids were observed in all irradiated specimen, and dislocation loops and dislocations were observed in the specimens that were irradiated at lower temperatures. On Vickers hardness testing, all of the irradiated specimens showed hardening. Especially Mo-41Re were drastically embrittled after irradiation at 874K or less. From these results, authors discuss about relation between microstructure development and radiation hardening, embrittlement, and propose the most efficient Re content and thermal treatment for Mo-Re alloys to be used under irradiation condition.

Journal Articles

R&D of a MW-class solid-target for spallation neutron source

Kawai, Masayoshi*; Furusaka, Michihiro*; Kikuchi, Kenji; Kurishita, Hiroaki*; Watanabe, Ryuzo*; Li, J.*; Sugimoto, Katsuhisa*; Yamamura, Tsutomu*; Hiraoka, Yutaka*; Abe, Katsunori*; et al.

Journal of Nuclear Materials, 318, p.35 - 55, 2003/05

R&D works for MW class solid target composed of tungsten to produce pulsed intense neutron source has been made in order to construct a future scattering facility. Three methods were investigated to prevent corrosion of tungsten from water; those are hipping, brazing and electric coating in molten salt bath. Hipping condition was optimized to be 1500 degree C in the previous work: here small punch test shows highest load for crack initiation of hipped materials at the boundary of W/Ta. The basic techniques for the other two methods were developed. Erosion test showed that uncovered W is susceptible of flowing water velocity. At high velocity w is easy to be eroded. For solid target design slab type and rod type targets were studied. As long as the optimized neutron performance is concerned, 1MW solid target is better than mercury target.

2 (Records 1-2 displayed on this page)
  • 1