Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
伊能 康平*; Hernsdorf, A. W.*; 今野 祐多*; 幸塚 麻里子*; 柳川 克則*; 加藤 信吾*; 砂村 道成*; 広田 秋成*; 東郷 洋子*; 伊藤 一誠*; et al.
ISME Journal, 12(1), p.31 - 47, 2018/01
被引用回数:44 パーセンタイル:91.94(Ecology)岐阜県瑞浪市の超深地層研究所において、深度300メートルの地下水を地下坑道から採取し、地下微生物の生態系を調査した。その結果、花崗岩深部でマグマ由来のメタンに依存した微生物生態系が存在することを明らかにした。
宮川 和也; 石井 英一; 廣田 明成*; 小松 大祐*; 池谷 康祐*; 角皆 潤*
Applied Geochemistry, 76, p.218 - 231, 2017/01
被引用回数:12 パーセンタイル:51.99(Geochemistry & Geophysics)炭酸塩はその形成時に、地下水水質の変遷履歴などの古水理地質情報を記録している可能性があり、地下に形成された炭酸塩脈は、過去の環境の変遷を知る手掛かりになる。本研究では、北海道北部の新第三系海成堆積岩である声問層と稚内層中に見られる炭酸塩脈の産状のコントラストについて、炭酸の供給源の観点からその成因を検討した。炭酸塩脈は、珪藻質泥岩の声問層中にはほとんど見られないが、珪質泥岩の稚内層中には見られる。地下水中に溶存している多量のメタンは微生物活動による二酸化炭素還元反応によって形成されていることが、同位体比分析の結果から分かった。岩盤中の全有機物量は、声問層では深度の増加とともに小さくなるが、稚内層では深度によらず一定であることが分かった。これはこれらの地層境界が、有機物の続成作用区分としてダイアジェネシス期からカタジェネシス期への変化点に相当することを示唆しており、ガスや炭酸塩の炭素同位体比もまた、稚内層中では深度とともに急に重くなっていることが分かった。以上のことから、次のような炭酸塩脈の形成プロセスが考えられる。有機物の続成作用があまり進んでいない声問層では、微生物により有機物が分解され、二酸化炭素が地下水中に供給される。一方で、声問層と比較した時に、稚内層では続成作用が進んでおり、有機物が比較的分解されにくい。このため、メタン生成反応に伴う炭酸の消費が補われることがないため、同時に炭酸塩脈が形成されやすい環境であったことが推察された。
伊能 康平*; 今野 祐多*; 幸塚 麻里子*; 廣田 明成*; 東郷 洋子*; 福田 朱里*; 小松 大介*; 角皆 潤*; 田辺 章文*; 山本 智*; et al.
Environmental Microbiology Reports (Internet), 8(2), p.285 - 294, 2016/04
被引用回数:22 パーセンタイル:65.17(Environmental Sciences)瑞浪超深地層研究所の深度300mの花崗岩中の地下水を対象として、ボーリング孔を利用した微生物特性の調査を行った。ボーリング孔から得られた地下水は、当初、好気性の水素酸化に関わるHydrogenophaga spp.が優勢種であったが、3年後にはNitrospirae門の微生物が優勢種となった。後者の微生物種は系統学的に深部地下水や陸域の温泉水において観察される種であり、この地域の土着の微生物種と考えられた。
鈴木 庸平*; 今野 祐多*; 福田 朱里*; 小松 大介*; 廣田 明成*; 渡邊 勝明*; 東郷 洋子*; 森川 徳敏*; 萩原 大樹; 青才 大介*; et al.
PLOS ONE (Internet), 9(12), p.e113063_1 - e113063_20, 2014/12
被引用回数:11 パーセンタイル:36.41(Multidisciplinary Sciences)土岐花崗岩が対象として掘削された深層ボーリング孔において、深部地下水中の微生物特性の調査を行った。その結果、低硫酸濃度環境下において、微生物的硫酸還元に伴う硫黄同位体分別が認められた。また、硫黄同位体分別の大きな同位体比および炭素同位体比は、メタン生成菌の活性が低いことを示唆した。これらの特徴は、低栄養環境である深部火成岩中の微生物生態系の特徴と考えられた。
伊藤 一誠*; 東郷 洋子*; 廣田 明成*; 鈴木 庸平*; 福田 朱里*; 大森 一秋; 長谷川 隆; 岩月 輝希
no journal, ,
瑞浪超深地層研究所内において地下水試料の水質分析を行い、微生物の代謝による化学環境の緩衝能を定量的に評価した。その結果、地下環境中の硫酸還元菌が水素を利用していると特定され、その代謝速度を見積もることができた。また、得られた硫酸消費速度は、地下環境における酸化還元緩衝能力を判断する明確な指標に成り得ると考えられた。
廣田 明成*; 東郷 洋子*; 伊藤 一誠*; 鈴木 庸平*; 福田 朱里*; 今野 祐多*; 角皆 潤*; 小松 大祐*; 長尾 誠也*; 岩月 輝希
no journal, ,
瑞浪超深地層研究所において、地下の微生物活動の影響を評価するため地下水中の各種溶存化学成分の濃度と硫酸イオン、硫化物イオンの硫黄安定同位体比の測定を行った。その結果、硫酸イオンと硫化物イオンの同位体分別係数は20-60‰であることが明らかとなり、地下深部の環境条件下において、硫酸イオン濃度が低い場合でも大きな硫黄同位体分別がおきる場合があることが示された。
廣田 明成*; 東郷 洋子*; 福田 朱里*; 伊藤 一誠*; 鈴木 庸平*; 角皆 潤*; 小松 大祐*; 岩月 輝希
no journal, ,
瑞浪超深地層研究所の研究坑道において花崗岩中の深部地下水を採取し、各種化学分析を行うと共に、深部地下環境を維持または再現した条件下で地下水中の微生物活動を観察し、同位体比を指標として原位置での代謝活性の評価を行った。その結果、微生物の硫酸還元活性があることを確認できた。また、高い水素濃度条件よりも原位置環境に近い低い水素濃度条件でより活性が高いことを確認できた。
宮川 和也; 水野 崇; 廣田 明成*; 小松 大祐*; 角皆 潤*
no journal, ,
炭化水素ガスは堆積岩を対象とした放射性廃棄物の地層処分の検討において、処分場閉鎖後の長期にわたる地層中の放射性物質の移動に対するガスの影響評価などの観点から、重要な検討課題である。そのため、堆積岩の地質特性とその変遷に関するこれまでの知見を整理した上で、溶存ガスの情報に基づき、その生成, 移動, 集積プロセスについて考察を行い、地球化学環境形成モデルの構築へ反映させることが重要である。しかしながら、地上調査で得られていた溶存ガスに関する情報は大きなばらつきを示し、明確な解釈を得ることが難しかったため、地下施設を利用した信頼できるデータを取得する必要があった。そこで本研究では、地下施設を用いて高精度のデータを取得し、そのデータをもとにCOの生成過程について考察を行った。その結果、メタンの主要な起源については、微生物活動による二酸化炭素の還元反応であるというこれまでの報告と同様の結果が確認された。一方で、これまで考えられていた炭酸の供給の無いような閉鎖的な空間という仮定は、必ずしも成り立たないことが分かった。また、地下施設から得られたデータは、地上調査と比較してばらつきの非常に小さい結果が得られ、試料の採取方法や分析方法についてもまた、再検討の余地があることが明らかになった。
宮川 和也; 水野 崇; 石井 英一; 廣田 明成*; 小松 大祐*; 池谷 康祐*; 角皆 潤*
no journal, ,
近年、高レベル放射性廃棄物の地層処分などの観点から、地下深部での地下水やガスなどの流体のゆっくりとした流れのプロセスの理解を進展させることが重要視されている。これまでに、水理地質学や地球化学、年代測定学といった複数の観点から、地下水の流動速度が遅いことの検証がなされてきた。1つの手法をもって過去の地下環境の変遷を断定することはできず、異なる複数の視点から検証を行うことは重要であることから、本研究では溶存ガスの観点から検証を行った。幌延深地層研究センターの地下施設を利用して得られた地下水中の溶存ガスに関する分析結果と、地上からのボーリング孔(HDB)による調査で得られた結果とを合わせて、地下のガスの分布の形成プロセスについて考察を行った。幌延地域の地下深部には、多量のメタンと二酸化炭素が溶存ガスとして賦存しており、これまでの研究結果によって、これらは強い還元的な環境の下での、有機物の分解や長期間の微生物活動による水素を基質とした二酸化炭素ガスの還元反応によって生成されたことが分かっている。本発表では、ガスの炭素同位体比の深度プロファイルが、現在の深度ではなく、過去の地層の最大埋没時の深度情報によって規定されていると考えられることを報告する。ガスを用いた観点からも、このように、地下深部の流体は非常にゆっくりとした動きである可能性を支持する結果が得られた。
宮川 和也; 石井 英一; 水野 崇; 廣田 明成*; 小松 大祐*; 池谷 康祐*; 角皆 潤*
no journal, ,
近年、高レベル放射性廃棄物の地層処分などの観点から、地下深部での地下水やガスなどの流体のゆっくりとした流れのプロセスの理解を進展させることが重要視されている。これまでに、水理地質学や地球化学、年代測定学といった複数の観点から、地下水の流動速度が遅いことの検証がなされてきた。1つの手法をもって過去の地下環境の変遷を断定することはできず、異なる複数の視点から検証を行うことは重要であることから、本研究では溶存ガスの観点から検証を行った。幌延深地層研究センターの地下施設を利用して得られた地下水中の溶存ガスに関する分析結果と、地上からのボーリング孔(HDB)による調査で得られた結果とを合わせて、地下のガスの分布の形成プロセスについて考察を行った。幌延地域の地下深部には、多量のメタンと二酸化炭素が溶存ガスとして賦存しており、これまでの研究結果によって、メタンは微生物活動による二酸化炭素ガスの還元反応によって生成されたことが分かっている。本発表では、ガスの同位体組成から、地層中への天水の浸透が、数万年前程度の比較的最近に生じた可能性があることが分かったことを報告する。また、稚内層は岩盤中の有機物が分解されず、閉鎖的な環境であったために、炭酸塩脈が多く見られることが分かった。