Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwata, Keiko; Hata, Kuniki; Tobita, Toru; Hirota, Takatoshi*; Takamizawa, Hisashi; Chimi, Yasuhiro; Nishiyama, Yutaka
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 7 Pages, 2021/07
Hirota, Takatoshi*; Nagoshi, Yasuto*; Hojo, Kiminobu*; Okada, Hiroshi*; Takahashi, Akiyuki*; Katsuyama, Jinya; Ueda, Takashi*; Ogawa, Takuya*; Yashirodai, Kenji*; Ohata, Mitsuru*; et al.
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 9 Pages, 2021/07
Li, Y.; Hirota, Takatoshi*; Itabashi, Yu*; Yamamoto, Masato*; Kanto, Yasuhiro*; Suzuki, Masahide*; Miyamoto, Yuhei*
JAEA-Review 2020-011, 130 Pages, 2020/09
For the improvement of the structural integrity assessment methodology on reactor pressure vessels (RPVs), the probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed and improved in Japan Atomic Energy Agency based on the latest knowledge. The PASCAL code evaluates the failure probabilities and frequencies of Japanese RPVs under transient events such as pressure thermal shock considering neutron irradiation embrittlement. In order to confirm the reliability of the PASCAL as a domestic standard code and to promote the application of PFM on the domestic structural integrity assessments of RPVs, it is important to perform verification activities, and summarize the verification processes and results as a document. On the basis of these backgrounds, we established a working group, composed of experts on this field besides the developers, on the verification of the PASCAL module and the source program of PASCAL was released to the members of working group. This report summarizes the activities of the working group on the verification of PASCAL in FY2016 and FY2017.
Lu, K.; Katsuyama, Jinya; Li, Y.; Miyamoto, Yuhei*; Hirota, Takatoshi*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*
Mechanical Engineering Journal (Internet), 7(3), p.19-00573_1 - 19-00573_14, 2020/06
Lu, K.; Katsuyama, Jinya; Li, Y.; Miyamoto, Yuhei*; Hirota, Takatoshi*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05
Hirota, Takatoshi*; Hirano, Takashi*; Onizawa, Kunio
Proceedings of 2013 ASME Pressure Vessels and Piping Conference (PVP 2013) (DVD-ROM), 7 Pages, 2013/07
Master Curve approach is the effective method to evaluate the fracture toughness of the ferritic steels accurately and statistically. The Japan Electric Association Code JEAC 4216-2011 was published based on the related standard ASTM E 1921-08 and the results of the investigation of the applicability of the Master Curve approach to Japanese reactor pressure vessel (RPV) steels. The reference temperature To can be determined according to this code in Japan. In this study, using the existing fracture toughness data of Japanese RPV steels, the method for determination of the alternative reference temperature RT based on Master Curve reference temperature To was statistically examined, so that RT has an equivalent safety margin to the conventional RT. Through the statistical treatment, the alternative reference temperature RT was proposed as the following equation; RT = To + C + 2. This method is applicable to the Japan Electric Association Code JEAC 4206 as an option item.