Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and fabrication of novel photonic crystal waveguide consisting of Si-ion implanted SiO$$_{2}$$ layers

Umenyi, A. V.*; Hommi, Masashi*; Kawashiri, Shinya*; Shinagawa, Teruyoshi*; Miura, Kenta*; Hanaizumi, Osamu*; Yamamoto, Shunya; Inoue, Aichi; Yoshikawa, Masahito

Key Engineering Materials, 459, p.168 - 172, 2011/04

A new type of two-dimensional photonic crystal (2-D PhC) waveguide was designed using finite difference time domain method to operate at a wavelength of 1.55 $$mu$$m applicable to optical fiber-communication systems. We estimated that a triangular-lattice 2-D PhC structure formed by air holes with a diameter of 465 nm and a period of 664 nm suit our purpose. To form a core of the waveguide, Si ions were implanted into a SiO$$_{2}$$ layer by using a 400-kV ion implanter. The implantation energy was 80 keV and the implantation amount was 1$$times$$10$$^{17}$$ ions/cm$$^{2}$$. The electron beam resist was spin-coated on a substrate and the designed pattern was written lithographically in the resist using Electron Beam. Atomic force microscope measurements revealed that the diameter and the period of air holes of the waveguide were 466 and 666 nm. These values were nearly equal to the designed ones. We thus succeeded in fabricating 2-D PhC waveguides in a Si-ion-implanted SiO$$_{2}$$ layer.

Oral presentation

Blue-light emission from silica substrates implanted Si ions

Miura, Kenta*; Tanemura, Tsuyoshi*; Hommi, Masashi*; Hanaizumi, Osamu*; Yamamoto, Shunya; Takano, Katsuyoshi; Sugimoto, Masaki; Yoshikawa, Masahito

no journal, , 

no abstracts in English

Oral presentation

UV and visible light emitting fused-silica substrates fabricated by Si-ion implantation

Umenyi, A. V.*; Hommi, Masashi*; Miura, Kenta*; Hanaizumi, Osamu*; Yamamoto, Shunya; Inoue, Aichi; Yoshikawa, Masahito

no journal, , 

Various works on silicon (Si)-based luminescent materials utilizing the quantum confinement effect, such as Si nanocrystals (Si-NC's), have been reported. Typical fabrication methods of Si-NC's are co-sputtering of Si and SiO$$_{2}$$, Si-ion implantation into SiO$$_{2}$$ plates, and so on. In this work, we observed ultraviolet (UV)-light emission from Si-ion-implanted fused-silica substrates under different implanting conditions. The implantation energy was 80 keV, and the implantation amount was 2$$times$$10$$^{17}$$ ions/cm$$^{2}$$. The Si-implanted substrates were annealed at 1100$$sim$$1250$$^{circ}$$C. Photoluminescence (PL) spectra were measured with excitation using a He-Cd laser. UV-PL spectra having peaks around a wavelength of 370 nm were observed from all the samples. The UV-peak wavelengths of the samples are almost the same in spite of the various annealing temperatures. Si-ion-implanted fused-silica are expected to be useful as light sources for next-generation optical-disk systems.

Oral presentation

Fabrication of UV light-emitting fused-silica substrates by Si-ion implantation and increase of light-emitting intensity by thermal annealing

Miura, Kenta*; Hommi, Masashi*; Hanaizumi, Osamu*; Yamamoto, Shunya; Sugimoto, Masaki; Yoshikawa, Masahito; Inoue, Aichi

no journal, , 

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1