Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 152

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of fabrication and inspection technologies for oxidation-resistant fuel element for high-temperature gas-cooled reactors

Aihara, Jun; Yasuda, Atsushi*; Ueta, Shohei; Ogawa, Hiroaki; Honda, Masaki*; Ohira, Koichi*; Tachibana, Yukio

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(4), p.237 - 245, 2019/12

Development of fabrication and inspection technologies of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors (HTGRs) in severe oxidation accident was carried out. Simulated coated fuel particles (CFPs), alumina particles, were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter simulated oxidation resistant fuel elements with SiC/C mixed matrix. Simulated oxidation resistant fuel elements with matrix whose Si/C mole ratio is 1.00 were fabricated. Failure fraction of CFPs in fuel elements is one of very important inspection subjects of HTGR fuel. It is essential that CFPs are extracted from fuel elements without additional failure. Development of method for extraction of CFPs was carried out. Desolation of SiC by KOH method or pressurized acidolysis method should be applied to extraction of CFPs.

Journal Articles

Magnetic and electrical properties of the ternary compound U$$_2$$Ir$$_3$$Si$$_5$$ with one-dimensional uranium zigzag chains

Li, D. X.*; Honda, Fuminori*; Miyake, Atsushi*; Homma, Yoshiya*; Haga, Yoshinori; Nakamura, Ai*; Shimizu, Yusei*; Maurya, A.*; Sato, Yoshiki*; Tokunaga, Masashi*; et al.

Physical Review B, 99(5), p.054408_1 - 054408_9, 2019/02

 Times Cited Count:2 Percentile:22.92(Materials Science, Multidisciplinary)

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

Superconducting and Fermi surface properties of single crystal Zr$$_2$$Co

Teruya, Atsushi*; Kakihana, Masashi*; Takeuchi, Tetsuya*; Aoki, Dai*; Honda, Fuminori*; Nakamura, Ai*; Haga, Yoshinori; Matsubayashi, Kazuyuki*; Uwatoko, Yoshiya*; Harima, Hisatomo*; et al.

Journal of the Physical Society of Japan, 85(3), p.034706_1 - 034706_10, 2016/03

 Times Cited Count:1 Percentile:13.94(Physics, Multidisciplinary)

Journal Articles

Demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Shizuma, Toshiyuki; Mori, Michiaki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Araki, Sakae*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1328 - 1330, 2015/09

Accelerator and laser technologies required for laser Compton scattering (LCS) photon source based on an energy-recovery linac (ERL) have been developed at the Compact ERL (cERL) facility. A high-flux, energy tunable, and monochromatic photon source such as the ERL-based LCS photon source is necessary for nondestructive assay of nuclear materials. For the demonstration of the ERL-based LCS photon generation, a laser enhancement cavity was installed at the recirculation loop of the cERL. The electron beam energy, the laser wavelength, and the collision angle are 20 MeV, 1064 nm, and 18 $$^{circ}$$, respectively. The calculated maximum energy of the LCS photons is about 7 keV. A silicon drift detector (SDD) with active area of 17 mm$$^{2}$$ placed 16.6 m from the collision point was used for observation of the LCS photons. As a result of the measurement, the flux on the detector, central energy, and energy width of the LCS photons were obtained as 1200/s, 6.91 keV, and 81 eV, respectively.

Journal Articles

JT-60SA superconducting magnet system

Koide, Yoshihiko; Yoshida, Kiyoshi; Wanner, M.*; Barabaschi, P.*; Cucchiaro, A.*; Davis, S.*; Decool, P.*; Di Pietro, E.*; Disset, G.*; Genini, L.*; et al.

Nuclear Fusion, 55(8), p.086001_1 - 086001_7, 2015/08

 Times Cited Count:25 Percentile:85.34(Physics, Fluids & Plasmas)

The most distinctive feature of the superconducting magnet system for JT-60SA is the optimized coil structure in terms of the space utilization as well as the highly accurate coil manufacturing, thus meeting the requirements for the steady-state tokamak research: A conceptually new outer inter-coil structure separated from the casing is introduced to the toroidal field coils to realize their slender shape, allowing large-bore diagnostic ports for detailed plasma measurements. A method to minimize the manufacturing error of the equilibrium-field coils has been established, aiming at the precise plasma shape/position control. A compact butt-joint has been successfully developed for the Central Solenoid, which allows an optimized utilization of the limited space for the Central Solenoid to extend the duration of the plasma pulse.

Journal Articles

Demonstration of high-flux photon generation from an ERL-based laser Compton photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Araki, Sakae*; Honda, Yosuke*; Kosuge, Atsushi*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 6th International Particle Accelerator Conference (IPAC '15) (Internet), p.1607 - 1609, 2015/06

Accelerator and laser technologies required for laser Compton scattering (LCS) photon source based on an energy-recovery linac (ERL) have been developed at the Compact ERL (cERL) facility. A high-flux, energy tunable, and monochromatic photon source such as the ERL-based LCS photon source is necessary for nondestructive assay of nuclear materials. For the demonstration of the ERL-based LCS photon generation, a laser enhancement cavity was installed at the recirculation loop of the cERL. The electron beam energy, the laser wavelength, and the collision angle are 20 MeV, 1064 nm, and 18 deg., respectively. The calculated maximum energy of the LCS photons is about 7 keV. A silicon drift detector (SDD) with active area of 17 mm$$^{2}$$ placed 16.6 m from the collision point was used for observation of the LCS photons. As a result of the measurement, the flux on the detector, central energy, and energy width of the LCS photons were obtained as 1200 /s, 6.91 keV, and 81 eV, respectively.

Journal Articles

X-ray absorption spectroscopy and novel electronic properties in heavy fermion compounds YbT$$_{2}$$Zn$$_{20}$$ (T: Rh and Ir)

Honda, Fuminori*; Hirose, Yusuke*; Miyake, Atsushi*; Mizumaki, Masaichiro*; Kawamura, Naomi*; Tsutsui, Satoshi*; Watanuki, Tetsu; Watanabe, Shinji*; Takeuchi, Tetsuya*; Settai, Rikio*; et al.

Journal of Physics; Conference Series, 592(1), p.012021_1 - 012021_5, 2015/03

 Times Cited Count:2 Percentile:65.76

no abstracts in English

Journal Articles

Construction of the equipment for a demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1328 - 1331, 2014/10

A high intensity $$gamma$$-ray source from the laser Compton scattering (LCS) by an electron beam in an energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear materials. In order to demonstrate accelerator and laser technologies required for a LCS photon generation, a LCS photon source is under construction at the Compact ERL (cERL). The LCS photon source consists of a mode-locked fiber laser and a laser enhancement cavity. A beamline and an experimental hatch are also under construction. The commissioning of the LCS photon source will be started in February 2015 and LCS photon generation is scheduled in March 2015.

Journal Articles

Development of the beamline flux monitor for the laser Compton-scattered photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.839 - 842, 2014/10

In order to demonstrate accelerator and laser technologies required for a laser Compton scattering (LCS) photon generation, a LCS photon source is under construction at the Compact ERL (cERL). We considered the flux monitors for the adjustment LCS photon source. A thin scintillator detector and a silicon drift detector are employed as flux monitors and are installed at the upstream part of the LCS beamline. The background signal level due to the bremsstrahlung of the electron beam was measured by a CsI(pure) scintillator. In the result of the measurement, the background signal is acceptable level for the flux monitors.

Journal Articles

Construction of a laser Compton scattered photon source at cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Honda, Yosuke*; Kosuge, Atsushi*; Urakawa, Junji*

Proceedings of 5th International Particle Accelerator Conference (IPAC '14) (Internet), p.1940 - 1942, 2014/07

In order to demonstrate required accelerator and laser technologies for a high intensity $$gamma$$-ray source from the laser Compton scattering (LCS), an LCS photon source and the peripheral equipment are under construction at the Compact ERL (cERL) at High Energy Accelerator Research Organization (KEK). The LCS photon source by an electron beam in the energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear species. The LCS photon source and the peripheral equipment consist of a mode-locked fiber laser, laser enhancement cavity, beamline, and experimental hatch. The commissioning of the LCS photon source will be started in February 2015.

Journal Articles

Neutron-sensitive ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detector as an alternative to a $$^{3}$$He-gas-based detector for a plutonium canister assay system

Nakamura, Tatsuya; Ozu, Akira; To, Kentaro; Sakasai, Kaoru; Suzuki, Hiroyuki; Honda, Katsunori; Birumachi, Atsushi; Ebine, Masumi; Yamagishi, Hideshi*; Takase, Misao; et al.

Nuclear Instruments and Methods in Physics Research A, 763, p.340 - 346, 2014/05

 Times Cited Count:3 Percentile:30.04(Instruments & Instrumentation)

A neutron-sensitive ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detector was developed as an alternative to a $$^{3}$$He-gas-based detector for use in a plutonium canister assay system. The detector has a modular structure, with a flat ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ceramic scintillator strip that is installed diagonally inside a light-reflecting aluminium case with a square cross section. The prototype detectors, which have a neutron-sensitive area of 30 mm $$times$$ 250 mm, exhibited a sensitivity of 21.7-23.4 $$pm$$ 0.1 cps$$/$$nv for thermal neutrons, a $$^{137}$$Cs $$gamma$$-ray sensitivity of 1.1-1.9 $$pm $$0.2 $$times$$ 10$$^{-7}$$ and a count variation of less than 6% over the detector length. A trial experiment revealed a temperature coefficient of less than -0.24$$pm$$ 0.05% / $$^{circ}$$C over the temperature range of 20-50$$^{circ}$$C.

Journal Articles

A Position-sensitive tubular scintillator-based detector as an alternative to a $$^{3}$$He-gas-based detector for neutron-scattering instruments

Nakamura, Tatsuya; Katagiri, Masaki*; To, Kentaro; Honda, Katsunori; Suzuki, Hiroyuki; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru; Soyama, Kazuhiko

Nuclear Instruments and Methods in Physics Research A, 741, p.42 - 46, 2014/03

 Times Cited Count:6 Percentile:50.1(Instruments & Instrumentation)

A position-sensitive tubular scintillator-based neutron detector is proposed as an alternative to a $$^{3}$$He-gas-based detector. The detector has a neutron-detecting element constructed from rolled ZnS/$$^{6}$$LiF scintillator screens that sandwich wavelength-shifting (WLS) fibre coils (SFC element). Multiple SFC elements are enclosed in an aluminium tube in a row to form a one-dimensional position-sensitive neutron detector. The design of the WLS fibre coil, which was determined by performing basic experiments, comprised two 0.75-mm-diameter WLS fibres wound in parallel at a pitch of 1.5 mm. A 64-element detector with a pixel size of 22 mm $$times$$ 20 mm (width $$times$$ length) successfully demonstrated the detection principle. The tubular shape of the new detector is similar to the usual 25-mm-diameter $$^{3}$$He tube, making this an alternative detector with the potential to be installed in a vacuum tank for inelastic-neutron-scattering instruments.

Journal Articles

A Scintillator-based detector with sub-100-$$mu$$m spatial resolution comprising a fibre-optic taper with wavelength-shifting fibre readout for time-of-flight neutron imaging

Nakamura, Tatsuya; To, Kentaro; Kawasaki, Takuro; Honda, Katsunori; Suzuki, Hiroyuki; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru; Soyama, Kazuhiko; Katagiri, Masaki*

Nuclear Instruments and Methods in Physics Research A, 737, p.176 - 183, 2014/02

 Times Cited Count:11 Percentile:72.25(Instruments & Instrumentation)

Journal Articles

Feeder components and instrumentation for the JT-60SA magnet system

Yoshida, Kiyoshi; Kizu, Kaname; Murakami, Haruyuki; Kamiya, Koji; Honda, Atsushi; Onishi, Yoshihiro; Furukawa, Masato; Asakawa, Shuji; Kuramochi, Masaya; Kurihara, Kenichi

Fusion Engineering and Design, 88(9-10), p.1499 - 1504, 2013/10

 Times Cited Count:6 Percentile:49.64(Nuclear Science & Technology)

The modifying of the JT-60U magnet system to the superconducting coils (JT-60SA) is progressing as a satellite facility for ITER by both parties of Japanese government and European commission (EU) in the Broader Approach agreement. The magnet system for JT-60SA consists of 18 Toroidal Field (TF) coils, a Central Solenoid (CS) with 4 modules, and 6 Equilibrium Field (EF) coils. The manufacturing of the JT-60SA magnet system is in progress in EU and Japan. The JT-60SA superconducting magnet system generates an average heat load of 3.2 kW at 4 K to the cryoplant, from nuclear and thermal radiation, conduction and electromagnetic heating, and requires current supplies 20 kA for 4 CS modules and 6 EF coils, 25.7 kA to 18 TF coils. The helium flow to remove this heat, consisting of supercritical helium at pressures up to 0.5 MPa and temperature between 4.4-4.8 K, is distributed to the coils and structures through the valve box (VB) from the cryoline connecting to the auxiliary cold box located outside the torus hall. The feeders also contain the electrical supplies from the current lead transitions to room temperature to the coil. The feeder components consist of the in-cryostat feeders with flexible parts to allow coil operational displacements from the connection pipes out of the cryostat, including S-bend conductor to allow differential thermal contraction and the coil terminal boxes (CTBs) with HIS current leads. A measurement and control system is required to monitor and control these coils and feeders for safety and optimal operational availability. For each coil, both current and supercritical helium are supplied from external systems and are controlled from a central system as part of the regular operation with plasma pulses. Quench detection instruments for superconducting coils, feeders and HTS current leads are provided as a separate, stand alone system.

Journal Articles

Simulation study of L/H transition with self-consistent integrated modelling of core and SOL/divertor transport

Yagi, Masatoshi; Shimizu, Katsuhiro; Takizuka, Tomonori; Honda, Mitsuru; Hayashi, Nobuhiko; Hoshino, Kazuo; Fukuyama, Atsushi*

Contributions to Plasma Physics, 52(5-6), p.372 - 378, 2012/06

 Times Cited Count:4 Percentile:20.17(Physics, Fluids & Plasmas)

Journal Articles

Multi-fluid transport equations on the flux coordinates in tokamaks

Honda, Mitsuru; Fukuyama, Atsushi*; Nakajima, Noriyoshi*

Europhysics Conference Abstracts (Internet), 36F, p.P5.014_1 - P5.014_4, 2012/00

Journal Articles

Characteristic heavy fermion properties in YbCu$$_2$$Si$$_2$$ and YbT$$_2$$Zn$$_{20}$$ (T: Co, Rh, Ir)

Onuki, Yoshichika; Yasui, Shinichi*; Matsushita, Masaki*; Yoshiuchi, Shingo*; Oya, Masahiro*; Hirose, Yusuke*; Dung, N. D.*; Honda, Fuminori*; Takeuchi, Tetsuya*; Settai, Rikio*; et al.

Journal of the Physical Society of Japan, 80(Suppl.A), p.SA003_1 - SA003_6, 2011/12

Journal Articles

On the neoclassical relationship between the radial electric field and radial current in tokamak plasmas

Honda, Mitsuru; Fukuyama, Atsushi*; Nakajima, Noriyoshi*

Journal of the Physical Society of Japan, 80(11), p.114502_1 - 114502_14, 2011/11

 Times Cited Count:4 Percentile:36.01(Physics, Multidisciplinary)

Journal Articles

Development of high temperature gas-cooled reactor (HTGR) fuel in Japan

Ueta, Shohei; Aihara, Jun; Sawa, Kazuhiro; Yasuda, Atsushi*; Honda, Masaki*; Furihata, Noboru*

Progress in Nuclear Energy, 53(7), p.788 - 793, 2011/09

 Times Cited Count:21 Percentile:86.19(Nuclear Science & Technology)

In Japan, high temperature gas-cooled reactor (HTGR) fuel fabrication technologies have been developed by Nuclear Fuel Industries, Ltd. (NFI) with the collaboration of JAEA through the HTTR project since 1960's. NFI successfully fabricated first and second loading fuel (0.9 tU each) for the HTTR of JAEA. Its excellent quality was confirmed from the first loading fuel through the long-termed high temperature operation by the end of March 2010. Based on the HTTR fuel technologies, silicon carbide (SiC) coated fuel is being developed for burn-up extension. For an advanced fuel designs, replacement of the SiC layer by a zirconium carbide (ZrC) layer is a very promising example. JAEA has performed ZrC coating tests to investigate the influence of coating parameters and material properties such as stoichiometry and density of ZrC.

152 (Records 1-20 displayed on this page)