Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanistic origin of grain size and oxygen interstitial effects on strain-induced $$alpha^{primeprime}$$ martensitic transformation in Ti-12Mo alloy

Chong, Y.*; Tsuru, Tomohito; Mitsuhara, Masatoshi*; Guo, B.*; Gholizadeh, R.*; Inoue, Koji*; Godfrey, A.*; Tsuji, Nobuhiro*

Communications Materials (Internet), 6, p.50_1 - 50_11, 2025/03

Strain-induced $$alpha^{primeprime}$$ martensitic phase transformation (SIMT) critically affects the mechanical properties of metastable $$beta$$ titanium alloys. In this study, the effects of $$beta$$ grain size and oxygen content on SIMT in a Ti-12wt.%Mo alloy were systematically investigated. It is found that SIMT is promoted by a decrease in grain size and in oxygen content. The mechanistic origins of the anomalous grain size dependency and the acute oxygen content dependency of SIMT are discussed based on multi-scale microstructural characterization and state-of-the-art simulations. Grain refinement does not raise the energy barrier for SIMT but rather provides more nucleation sites for strain-induced $$alpha^{primeprime}$$ martensite, thereby promoting SIMT in fine-grained Ti-12wt.%Mo alloy. In contrast, for the Ti-12wt.%Mo-0.3 wt.%O alloy, oxygen atoms substantially increase the energy barrier for SIMT, due to a change in the local configuration of oxygen atoms during the phase transformation. In addition, atom probe tomography reveals for the first time that oxygen atoms segregate at $$alpha^{primeprime}/beta$$ phase boundaries, thereby further restricting the growth of $$alpha^{primeprime}$$ martensite.

Journal Articles

Oxygen interstitials make metastable $$beta$$ titanium alloys strong and ductile

Chong, Y.*; Gholizadeh, R.*; Guo, B.*; Tsuru, Tomohito; Zhao, G.*; Yoshida, Shuhei*; Mitsuhara, Masatoshi*; Godfrey, A.*; Tsuji, Nobuhiro*

Acta Materialia, 257, p.119165_1 - 119165_14, 2023/09

 Times Cited Count:38 Percentile:98.36(Materials Science, Multidisciplinary)

Metastable $$beta$$ titanium alloys possess excellent strain-hardening capability, but suffer from a low yield strength. As a result, numerous attempts have been made to strengthen this important structural material in the last decade. Here, we explore the contributions of grain refinement and interstitial additions in raising the yield strength of a Ti-12Mo (wt.%) metastable $$beta$$ titanium alloy. Surprisingly, rather than strengthening the material, grain refinement actually lowers the ultimate tensile strength in this alloy. This unexpected and anomalous behavior is attributed to a significant enhancement in strain-induced $$alpha^{primeprime}$$ martensite phase transformation, where in-situ synchrotron X-ray diffraction analysis reveals, for the first time, that this phase is much softer than the parent $$beta$$ phase. Instead, a combination of both oxygen addition and grain refinement is found to realize an unprecedented strength-ductility synergy in a Ti-12Mo-0.3O (wt.%) alloy. The advantageous effect of oxygen solutes in this ternary alloy is twofold. Firstly, solute oxygen largely suppresses strain-induced transformation to the $$alpha^{primeprime}$$ martensite phase, even in a fine-grained microstructure, thus avoiding the softening effect of excessive amounts of $$alpha^{primeprime}$$ martensite. Secondly, oxygen solutes readily segregate to twin boundaries, as revealed by atom probe tomography. This restricts the growth of $${332}langle113rangle$$ deformation twins, thereby promoting more extensive twin nucleation, leading to enhanced microstructural refinement. The insights from our work provide a cost-effective rationale for the design of strong yet tough metastable $$beta$$ titanium alloys, with significant implications for more widespread use of this high strength-to-weight structural material.

Journal Articles

Grain refinement in titanium prevents low temperature oxygen embrittlement

Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.

Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02

 Times Cited Count:41 Percentile:96.16(Multidisciplinary Sciences)

Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size $$sim$$2.0 $$mu$$m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced $$<c+a>$$ dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.

Journal Articles

Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen

Chong, Y.*; Tsuru, Tomohito; Guo, B.*; Gholizadeh, R.*; Inoue, Koji*; Tsuji, Nobuhiro*

Acta Materialia, 240, p.118356_1 - 118356_15, 2022/11

 Times Cited Count:34 Percentile:94.82(Materials Science, Multidisciplinary)

In this study, we systematically investigated the influences of nitrogen content and grain size on the tensile properties and deformation behaviors of titanium at room temperature. By high-pressure torsion and annealing, we obtained ultrafine-grained (UFG) Ti-0.3wt.%N alloy with a fully recrystallized microstructure, which combined an unprecedented synergy of ultrahigh yield strength (1.04 GPa) and large uniform elongation (10%). The hardening and strain-hardening mechanisms of Ti-0.3wt.%N alloy were comprehensively studied via deformation substructure observation and first-principles calculations. It is revealed that the contributions of nitrogen to the excellent strength/ductility balance in UFG Ti-0.3wt.%N were twofold. On one hand, nitrogen atoms inside the grains strongly impeded the motion of $$<a>$$ dislocations on prismatic plane due the shuffling of nitrogen from octahedral to hexahedral site, giving rise to a six-fold increase in the friction stress than pure Ti. Moreover, the greatly reduced stacking fault energy difference between prismatic and pyramidal planes in Ti-0.3wt.%N alloy facilitated an easier activation of $$<c+a>$$ dislocations, which contributed to an enhanced strain-hardening rate. On the other hand, some nitrogen atoms segregated near the grain boundaries, a phenomenon discovered in $$alpha$$-titanium for the first time. These segregated nitrogen atoms served as an additional contributor to the yield strength of UFG Ti-0.3wt.%N, by raising the barrier against dislocation slip transfer between grains. Our experimental and theoretical calculation work provide insights for the design of affordable high strength titanium without a large sacrifice of ductility, shedding lights on a more widespread use of this high strength to weight material.

Journal Articles

The $$omega^{3}$$ scaling of the vibrational density of states in quasi-2D nanoconfined solids

Yu, Y.*; Yang, C.*; Baggioli, M.*; Phillips, A. E.*; Zaccone, A.*; Zhang, L.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Yu, D.*; Hong, L.*

Nature Communications (Internet), 13, p.3649_1 - 3649_10, 2022/06

 Times Cited Count:23 Percentile:90.14(Multidisciplinary Sciences)

Journal Articles

Phase transitions and polymerization of C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ cocrystal under extreme conditions

Wang, Y.*; Wang, L.*; Zheng, H.*; Li, K.*; Andrzejewski, M.*; Hattori, Takanori; Sano, Asami; Katrusiak, A.*; Meng, Y.*; Liao, F.*; et al.

Journal of Physical Chemistry C, 120(51), p.29510 - 29519, 2016/12

 Times Cited Count:27 Percentile:60.95(Chemistry, Physical)

Pressure-induced polymerization (PIP) of aromatic molecules can generate saturated carbon nanostructures. As a strongly interacted $$pi$$-$$pi$$ stacking unit, the C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ adduct is widely applied in supramolecular chemistry, and it provides a good preorganization for the PIP. Here we investigated the structural variation of C$$_{6}$$H$$_{6}$$-C$$_{6}$$F$$_{6}$$ cocrystal and the subsequent PIP process under high pressure. Four new molecular-complex phases V, VI, VII, and VIII have been identified and characterized by the in situ Raman, IR, synchrotron X-ray, and neutron diffraction. The phase V is different from the phases observed at low temperature, which has a tilted column structure. Phases VI and VII have a structure similar to phase V. Phase VIII polymerizes irreversibly upon compression above 25 GPa without any catalyst, producing sp$$^{3}$$(CH/F)$$_{n}$$ materials. The $$pi$$-$$pi$$ interaction is still dominant below 0.5 GPa but is most likely to be overstepped under further compression, which is important for discussing the supramolecular phase transition and the polymerization process.

Journal Articles

Six-party qualification program of FW fabrication methods for ITER blanket module procurement

Ioki, Kimihiro; Elio, F.*; Barabash, V.*; Chuyanov, V.*; Rozov, V.*; Wang, X.*; Chen, J.*; Wang, L.*; Lorenzetto, P.*; Peacock, A.*; et al.

Fusion Engineering and Design, 82(15-24), p.1774 - 1780, 2007/10

 Times Cited Count:14 Percentile:67.11(Nuclear Science & Technology)

In December 2005, the new procurement allocation plan of the ITER components among the seven Parties was prepared. The need to qualify for procurement of the specific components was especially introduced in the document. The main features and milestones of the qualification program are described in "Procurement Plan" for each specific component. Due to the complicated features of FW procurement, the procurement document has to be developed precisely. To guarantee high quality of 1700 FW panels produced by 6 different Parties, a qualification program is essential. The qualification mock-up is 80 mm wide, 240 mm long and 81 mm thick with 3 beryllium tiles 10 mm thick. Heat load tests will be performed on the qualification mock-ups in 2007 in EU and USA facilities. The maximum design heat load on the ITER FW is 0.5 MW/m $$^{2}$$ (steady state) $$times$$ 30,000 shots. Mechanical tests of joints are also required using standardized methods. Only Parties which have satisfied the acceptance criteria of the qualification tests can proceed to the procurement stage of the ITER FW. Semi-prototypes (roughly 1000 mm $$times$$ 200 mm) are also requested before the ITER FW manufacturing.

Journal Articles

Measurement of the electron density produced by the prepulse in an experiment of high energy proton beam generation

Jeong, T.*; Choi, I. W.*; Sung, J. H.*; Kim, H.*; Hong, K.*; Yu, T.*; Kim, J.-H.*; Noh, Y.*; Ko, D.-K.*; Lee, J.*; et al.

Journal of the Korean Physical Society, 50(1), p.34 - 39, 2007/01

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1