Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Lee, J.; Ito, Fumiaki*; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*
Dai-43-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2022/11
no abstracts in English
Lee, J.; Hironaka, Kota; Ito, Fumiaki*; Takahashi, Tone; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*
KURNS Progress Report 2021, P. 97, 2022/07
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English
Seki, Misaki; Fujita, Yoshitaka; Fujihara, Yasuyuki*; Zhang, J.*; Yoshinaga, Hisao*; Sano, Tadafumi*; Hori, Junichi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; et al.
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(1), p.2 - 9, 2022/06
no abstracts in English
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*; et al.
Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05
Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Fujihara, Yasuyuki*; Suzuki, Tatsuya*; Yoshinaga, Hisao*; Hori, Junichi*; Suematsu, Hisayuki*; Tsuchiya, Kunihiko
Journal of Physics; Conference Series, 2155, p.012018_1 - 012018_6, 2022/01
Technetium-99m (Tc), the daughter nuclide of Molybdenum-99 (
Mo), is the most commonly used radioisotope in radiopharmaceuticals. The research and development (R&D) for the production of
Mo by the neutron activation method ((n,
) method) has been carried out from viewpoints of no-proliferation and nuclear security, etc. Since the specific activity of
Mo produced by the (n,
) method is extremely low, developing Al
O
with a large Mo adsorption capacity is necessary to adapt (n,
)
Mo to the generator. In this study, three kinds of Al
O
specimens with different raw materials were prepared and compared their adaptability to generators by static and dynamic adsorption. MoO
pellet pieces (1.5g) were irradiated with 5 MW for 20 min in the Kyoto University Research Reactor (KUR). Irradiated MoO
pellet pieces were dissolved in 6M-NaOH aq. In dynamic adsorption, 1 g of Al
O
was filled into a PFA tube (
1.59 mm). The
Mo adsorption capacity of Al
O
specimens under dynamic condition was slightly reduced compared to that under static condition. The
Tc elution rate was about 100% at 1.5 mL of milking in dynamic adsorption, while it was around 56-87% in static adsorption. The
Mo/
Tc ratio of dynamic condition was greatly reduced compared to that of static condition. Therefore, the
Tc elution property is greatly affected by the method of adsorbing Mo, e.g., the column shape, the linear flow rate, etc.
Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hori, Junichi*; Shibahara, Yuji*; et al.
Journal of Nuclear Science and Technology, 58(11), p.1159 - 1164, 2021/11
Times Cited Count:2 Percentile:53.86(Nuclear Science & Technology)Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Daigo, Fumihisa; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2020, P. 136, 2021/08
no abstracts in English
Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo
KURNS Progress Report 2020, P. 98, 2021/08
A compact Nuclear Resonance Transmission Analysis (NRTA) system using a Laser Driven Neutron Source (LDNS) has been developed as a part of the development of nuclear non-proliferation technology supported by the MEXT. In NRTA, the neutron energy emitted from a pulsed neutron source is measured using the time-of-flight (TOF) method. LDNS is of interest because of its short pulse width, which is necessary for accurate TOF measurements over short flight distances. In the short-distance TOF measurement, there will be a large gamma-ray background event due to the coincidence of the timing of the arrival of 2.2 MeV gamma-rays due to neutron capture on hydrogen in the moderator and the timing of the arrival of neutrons around the resonance energy. Since the LDNS is still under development, the neutron flux is not sufficient and it is desirable to use a detector with high detection efficiency. For these reasons, we have developed a detector with low efficiency to gamma-rays and high efficiency to neutrons (multilayer neutron detector). As one of the results of this year's experiments, we confirmed that the multilayer neutron detector have low sensitivity to gamma-rays.
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Terada, Kazushi*; Kodama, Yu*; Nakano, Hideto*; et al.
Nuclear Instruments and Methods in Physics Research A, 1003, p.165318_1 - 165318_10, 2021/07
Times Cited Count:3 Percentile:68.44(Instruments & Instrumentation)Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Fujihara, Yasuyuki*; Kitagawa, Tomoya*; Matsukura, Minoru*; Hori, Junichi*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko
Journal of Radioanalytical and Nuclear Chemistry, 327(3), p.1355 - 1363, 2021/03
Times Cited Count:1 Percentile:30.57(Chemistry, Analytical)We prepared three types of AlO
with different surface structures and investigated
Mo-adsorption/
Tc-elution properties using [
Mo]MoO
that was irradiated in the Kyoto University Research Reactor. Al
O
adsorbed [
Mo]molybdate ions in solutions at different pH; the lower was the pH, the higher was the Mo-adsorption capacity of Al
O
. The
Tc-elution properties of molybdate ion adsorbed Al
O
were elucidated by flowing saline. Consequently, it was suggested that
Mo-adsorption/desorption properties are affected by the specific surface of Al
O
and
Tc-elution properties are affected by the crystal structure of Al
O
.
Katabuchi, Tatsuya*; Hori, Junichi*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Tosaka, Kenichi*; Endo, Shunsuke; et al.
JAEA-Conf 2020-001, p.5 - 9, 2020/12
Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Kimura, Atsushi; Iwamoto, Nobuyuki; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Rovira, G.*; Matsuura, Shota*
EPJ Web of Conferences, 239, p.01044_1 - 01044_4, 2020/09
Times Cited Count:1 Percentile:79.71Seki, Misaki; Ishikawa, Koji*; Sano, Tadafumi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2019, P. 279, 2020/08
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kato, Yoshiaki; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2019, P. 157, 2020/08
no abstracts in English
Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Iwamoto, Nobuyuki; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*
JAEA-Conf 2019-001, p.193 - 197, 2019/11
Seki, Misaki; Ishikawa, Koji*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2018, P. 257, 2019/08
no abstracts in English
Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.
Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06
Times Cited Count:9 Percentile:79.25(Nuclear Science & Technology)Terada, Kazushi*; Kimura, Atsushi; Nakao, Taro*; Nakamura, Shoji; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.
Journal of Nuclear Science and Technology, 55(10), p.1198 - 1211, 2018/10
Times Cited Count:14 Percentile:87.05(Nuclear Science & Technology)Kitatani, Fumito; Tsuchiya, Harufumi; Toh, Yosuke; Hori, Junichi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Nakajima, Ken*
KURRI Progress Report 2017, P. 99, 2018/08