Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Asai, Shiho*; Horita, Takuma
Bunseki Kagaku, 73(10-11), p.569 - 578, 2024/10
The accurate estimation of the quantities and composition of long-lived radionuclides in radioactive waste is crucial for assessing the long-term safety of its disposal. Traditionally, theoretical predictions of the quantities of long-lived radionuclides obtained from burn-up calculation codes with evaluated nuclear data have been used especially for the safety assessment of high-level radioactive waste. However, such nuclear data used in theoretical predictions have not been sufficiently validated due to the scarcity of the reported measurement data. In this study, we aim to contribute to the improvement of the reliability of theoretical predictions by confirming them with the measured quantities of long-lived radionuclides per unit mass of uranium in spent nuclear fuel, which are output data obtained from the burnup calculation code. This involves measuring the long-lived radionuclides present in nuclear fuel pellets used in commercial nuclear reactors. Specifically, we focused on Zr,
Pd, and
Cs, which can be effectively measured using an inductively coupled plasma mass spectrometer (ICP-MS). Besides the purpose of validating the nuclear data, this article also highlights viable measurement techniques for these radionuclides, along with examples demonstrating their applicability to long-lived radionuclides, including the preparation procedures for their measurement.
Horita, Takuma; Yamagishi, Isao; Nagaishi, Ryuji; Kashiwaya, Ryunosuke*
JAEA-Technology 2021-012, 34 Pages, 2021/07
Waste mainly consisting of carbonate precipitates (carbonate slurry) from the Advanced Liquid Processing System (ALPS) and the improved ALPS at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Holdings, Inc. have been storing in the High Integrity Container (HIC). The supernatant solution of carbonate slurry contained in some of HICs were overflowed in April of 2015. The all of level of liquid in the HICs were investigated; however, almost of the HICs were under the level of overflow. The mechanism of overflow suggested to be depending on the difference of the properties of the carbonate slurry such as the retention/release characteristics of the bubbles. Therefore, in order to clarify the mechanism of leakage, the repeatability experiment was carried out by using simulated carbonate slurry. The simulated carbonate slurry was perpetrated by using the same cross-flow filter system of the actual ALPS. Moreover, the preparative conditions for the simulated carbonate slurry were the same as Mg/Ca concentration ratio in inlet water of the ALPS (raw water) and the ALPS operating conditions. The chemical characteristics of simulated carbonate slurries were revealed by ICP-AES, pH meter, etc. The density of the settled slurry layer tended to increase depending on the calcium concentration in the raw water. The bubble injection test was conducted in order to investigate the bubble retention/release behavior in the simulated carbonate slurry layer. The simulated carbonate slurry with high settling density, which was generated by high calcium concentration solution was revealed to retain the injected bubbles. Since the ratio of concentration calcium and magnesium during the carbonate slurry generation is assumed to affect the retention of bubbles in the slurry layer, the information on the composition of raw water is one of important factor for overflow of HICs.
Horita, Takuma; Asai, Shiho*; Konda, Miki; Matsueda, Makoto; Hanzawa, Yukiko; Kitatsuji, Yoshihiro
Bunseki Kagaku, 69(10/11), p.619 - 626, 2020/10
Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)We have developed a Sr adsorption fiber for rapid analysis of Sr. The prepared Sr adsorption fiber has a Sr-extraction layer that densely retains a Sr-selective extractant, an 18-crown-6 ether derivative, on the fiber surface. Hydrophobic group-containing polymer chains embedded onto the surface of the fiber allow to form a hydrophobic phase, incorporating Sr-selective extractants. This unique surface structure provides high adsorption capacity, leading to rapid and highly efficient adsorption of Sr
. The adsorption capacity of the Sr adsorption fiber was 3 times higher than commercially available 18-crown-6 ether derivative-impregnated resin (Sr Resin). The equilibrium adsorption capacity of the Sr adsorption fiber was comparable to the Sr Resin. The retained
Sr was finally determined by a GM counter. The total analysis time including the Sr adsorption and measurement was about 1 hour.
Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Horita, Takuma; Yomogida, Takumi; Kitatsuji, Yoshihiro
Analytical Chemistry, 92(4), p.3276 - 3284, 2020/02
Times Cited Count:7 Percentile:26.95(Chemistry, Analytical)The long-term safety assessment of spent Cs adsorbents produced during the decontamination of radiocesium-containing water at the Fukushima Daiichi Nuclear Power Plant requires one to estimate their Cs content prior to final disposal.
Cs is usually quantified by inductively coupled plasma mass spectrometry (ICP-MS), which necessitates the elution of Cs from Cs adsorbents. However, this approach suffers from the high radiation dose from
Cs. To address this challenge, we herein employed laser ablation ICP-MS for direct quantitation of
Cs in Cs adsorbents and used a model Cs adsorbent prepared by immersion of a commercially available Cs adsorbent into radiocesium-containing liquid waste to verify the developed technique. The use of the
Cs/
Cs ratio and
Cs radioactivity obtained by gamma spectrometry achieved simple and precise quantitation of
Cs and the resulting
Cs activity of 0.36 Bq agreed well with that in the original radiocesium-containing liquid waste.
Asai, Shiho; Ohata, Masaki*; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro
Analytical and Bioanalytical Chemistry, 411(5), p.973 - 983, 2019/02
Times Cited Count:13 Percentile:59.78(Biochemical Research Methods)Determination of radiopalladium Pd is required for ensuring the radiation safety of Pd extracted from spent nuclear fuel for recycling or disposal. We employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to simplify an analytical procedure of
Pd. Pd was separated through selective Pd precipitation reaction from spent nuclear fuel. Laser ablation allows direct measurement of the Pd precipitates, skipping the dissolution and dilution procedure. In this study,
Pd in natural Pd standard solution was used as an internal standard, taking advantage of its absence in spent nuclear fuel. The Pd precipitate was uniformly embedded on the surface of the centrifugal filter, forming a microscopically thin flat surface of Pd. The resulting homogeneous Pd layer is suitable for obtaining a stable signal ratio of
Pd/
Pd. The amount of
Pd obtained by LA-ICP-MS corresponds to the values obtained by conventional solution nebulization measurement.
Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa*; Hanzawa, Yukiko; Horita, Takuma; Esaka, Fumitaka; Oba, Hironori*; Kitatsuji, Yoshihiro
Bunseki Kagaku, 66(9), p.647 - 652, 2017/09
Times Cited Count:3 Percentile:9.68(Chemistry, Analytical)Palladium-107 is a long-lived fission product, which can be found in high-level radioactive liquid wastes (HLLW). Determination of the Pd contents in HLLW is essential to evaluate the long-term safety of HLLW repositories. However, the
Pd content in HLLW has not been reported because of difficulties in pretreatment for the measurement. In this study, we investigated applicability of laser-induced photoreduction to HLLW solution: it enables a simple and non-contact separation of Pd. The results showed the recovery of 60% was achieved at the conditions: 40% ethanol, 20 min irradiation, 100 mJ of pulse energy. Additionally, major radionuclides and potentially interfering components in ICP-MS were removed from the simulated HLLW over a wide concentration range of Pd from 0.24 to 24 mg L
, showing the applicability of the proposed separation technique to HLLW samples.
Segawa, Yukari; Horita, Takuma; Kitatsuji, Yoshihiro; Kumagai, Yuta; Aoyagi, Noboru; Nakada, Masami; Otobe, Haruyoshi; Tamura, Yukito*; Okamoto, Hisato; Otomo, Takashi; et al.
JAEA-Technology 2016-039, 64 Pages, 2017/03
The laboratory building No.1 for the plutonium research program (Bldg. Pu1) was chosen as one of the facilities to decommission by Japan Atomic Energy Agency Reform in September, 2013. The research groups, users of Bldg. Pu1, were driven by necessity to remove used equipment and transport nuclear fuel to other facilities from Bldg. Pu1. Research Group for Radiochemistry proactively established the Used Equipment Removal Team for the smooth operation of the removal in April, 2015. The team classified six types of work into the nature of the operation, removal of used equipment, disposal of chemicals, stabilization of mercury, stabilization of nuclear fuel, transportation of nuclear fuel and radioisotope, and survey of contamination status inside the glove boxes. These works were completed in December, 2015. This report circumstantially shows six works process, with the exception of the approval of the changes on the usage of nuclear fuel in Bldg. Pu1 to help prospective decommission.
Horita, Takuma; Asai, Shiho; Konda, Miki; Hanzawa, Yukiko; Saito, Kyoichi*; Fujiwara, Kunio*; Sugo, Takanobu*; Kitatsuji, Yoshihiro
Bunseki Kagaku, 66(3), p.189 - 193, 2017/03
Times Cited Count:1 Percentile:3.13(Chemistry, Analytical)A Sr-selective adsorption fiber was prepared for rapid analysis of Sr content by using radiation-induced emulsion graft polymerization and subsequent chemical modification. A polyethylene fiber with a diameter of 13
m was first immersed in a methanol solution of an epoxy-group-containing vinyl monomer, glycidyl methacrylate (GMA), and polyoxyethylene sorbitol ester (Tween20) as a surfactant for graft-polymerization of GMA. Octadecylamine was then bound to a polymer chain extending from the fiber surface providing hydrophobicity to the polymer chain. Dicyclohexano-18-crown-6 (DCH18C6) was finally impregnated onto the polymer chain via a hydrophobic interaction between the octadecyl moiety of the polymer chain and the cyclohexyl moiety of DCH18C6. The fiber surface structure, characterized by DCH18C6 molecules loosely entangled with polymer chains, afforded realizes the rapid and selective adsorption of Sr ions with an adsorption rate approximately 100 times higher than that of a commercially available Sr-selective resin (Sr Resin).
Asai, Shiho; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro
Analytical Chemistry, 88(24), p.12227 - 12233, 2016/12
Times Cited Count:19 Percentile:56.74(Chemistry, Analytical)Safety evaluation of a radioactive waste repository requires credible activity estimates confirmed by actual measurements. A long-lived radionuclide, Pd, which can be found in radioactive wastes, is one of the difficult-to-measure nuclides and results in a deficit in experimentally determined contents. In this study, a precipitation-based separation method has been developed for the determination of
Pd with ICP-MS. The photoreduction induced by laser irradiation at 355 nm provides short-time and one-step recovery of Pd. The proposed method was verified by applying it to a spent nuclear fuel sample. In order to efficiently recover Pd, a natural Pd standard was employed as the Pd carrier. The chemical yield of Pd was about 90% with virtually no impurities, allowing accurate quantification of
Pd.
Horita, Takuma; Iwasaki, Maho
no journal, ,
no abstracts in English
Do, V. K.; Kitamura, Kiyoshi; Horita, Takuma; Furuse, Takahiro
no journal, ,
We report an application of automated devices for multi-step chemical separation for nickel and an idea of subsequent quantification for Ni-59 using ICP-QQQ-MS. Nickel is separated on our selected automated instruments applying a conventional separation scheme. The obtained chemical recovery for Ni standard carrier was 89.8% (relative standard deviation, RSD of 2.9%, n = 3), which is consistent with the manually obtained recovery of 87.0% (RSD = 2.2%, n = 3). The quantification of Ni-59 by ICP-QQQ-MS was examined. Accordingly, the intensity of 59Ni could be deduced from an intensity correction curve for natural isotopes of nickel. The proposed analytical method is more rapid and less laborious, being expected to reduce radiation exposure to workers.
Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Yomogida, Takumi; Horita, Takuma; Kitatsuji, Yoshihiro
no journal, ,
A large amount of Cs adsorbents left over after decontamination of waste water has continued to accumulate in the Fukushima Daiichi Nuclear Power Plant. For safe disposal of such Cs adsorbents, estimation of the radioactivity is crucial. A long-lived beta emitting nuclide Cs which is captured in the Cs adsorbents along with a major radiation contributor
Cs. Different from
Cs which can be measured in gamma spectrometry, the activity of
Cs is generally measured in liquid form, requiring elution of Cs
. However, high radiation from the Cs adsorbents hampers the operations. In this study, we applied LA-ICP-MS which allows direct measurement of Cs adsorbent. With
Cs /
Cs given by LA-ICP-MS,
Cs can be calculated by combining a measured
Cs radioactivity. A radiocesium-containing sample was used to verify the proposed method. The results agreed well with those obtained through the measurement of Cs-separated solution.
Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Horita, Takuma; Yomogida, Takumi; Kitatsuji, Yoshihiro
no journal, ,
A large amount of spent Cs adsorbents used for decontaminating water in Fukushima Daiichi Nuclear Power Station are stored in the site. To dispose them safely, the estimation of Cs activity along with that of
Cs is indispensable.
Cs is generally measured by ICP-MS, which required the sample to be prepared in liquid form and thus the elution of Cs from the Cs adsorbents is essential. However, this approach suffers from the high radiation dose from
Cs. In this study, we quantified
Cs in a Cs adsorbent using the
Cs/
Cs ratio obtained by LA-ICP-MS and
Cs radioactivity obtained by gamma spectrometry. To evaluate the applicability, we employed a
Cs -containing water sample to prepare a model spent Cs adsorbent with a certified
Cs activity. The resulting
Cs activity of 0.36 Bq calculated by
Cs /
Cs ratio of 0.41
0.02 and
Cs activity agreed well with that of the originally determined
Cs activity in the model spent Cs adsorbent, demonstrating that the proposed technique has high validity to
Cs determination of a real sample.
Kato, Tomoaki; Horita, Takuma; Yamagishi, Isao
no journal, ,
no abstracts in English
Horita, Takuma; Asai, Shiho; Hanzawa, Yukiko; Saito, Kyoichi*; Fujiwara, Kunio*; Sugo, Takanobu*; Kitatsuji, Yoshihiro
no journal, ,
There has been an increasing demand for rapid analysis of Sr to ensure a prompt action against the contaminated water in the Fukushima Daiichi NPP. Precedent works demonstrated that Cs adsorption fibers prepared by utilizing graft polymerization technology achieved high-speed removal of
Cs in the contaminated water. In this study, we have investigated the applicability of such proven technology to the preparation of a Sr adsorption fiber specialized for the selective extraction of Sr. In the prepared fiber, an extractant for Sr
,dicyclohexano-18-crown-6-ether (DCH18C6) was impregnated via hydrophobic interaction between DCH18C6 and the hydrophobic polymer chains attached onto the surface of the fiber. To increase the adsorption capacity, emulsion graft polymerization which promotes the polymer chains to grow longer was applied. The densely-packed DCH18C6 inside the interfacial phase formed by the polymer chains facilitates the efficient adsorption. The amounts of Sr adsorbed is comparable to those of conventional adsorbents, indicating that the prepared fiber has a feasible performance for Sr adsorption.
Horita, Takuma; Asai, Shiho; Konda, Miki; Hanzawa, Yukiko; Saito, Kyoichi*; Fujiwara, Kunio*; Kitatsuji, Yoshihiro
no journal, ,
There has been an increasing importance of the development of rapid separation techniques for Sr analysis, responding to needs in Fukushima Daiichi NPP. However, conventional
Sr analytical methods require two different separation steps for Sr and Y, respectively, resulting in a long processing time of about one month. In this study, we prepared a Sr adsorptive fiber (Sr fiber) that has a high density Sr adsorption phase on its surface, allowing to highly efficient
-ray counting by minimizing the self-attenuation effects. The adsorption capacity of the prepared Sr fiber was about 14 g/mol, which is equivalent to that of a commercially available Sr adsorptive resin (Sr Resin). The selectivity of the Sr fiber was nearly the same as that of the Sr resin. Considering that the Sr fiber has a specific surface area 1000 times smaller than that of the Sr Resin, the Sr ions can be concentrated to 1000 times on its surface, capable of achieving highly-efficient
-ray counting. From these result, we confirmed that Sr fiber has adsorption capacity and selectivity necessary for highly efficient
-ray counting of
Sr.
Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa*; Hanzawa, Yukiko; Horita, Takuma; Esaka, Fumitaka; Oba, Hironori*; Kitatsuji, Yoshihiro
no journal, ,
Recently, we developed a precipitation-based separation method for the determination of Pd with ICP-MS. However, a pulsed-laser light source is indispensable to form Pd precipitation in the separation method. There were difficulties in handling of a pulsed-laser light source. Simplified irradiation procedure is desirable to facilitate a Pd separation procedure. In this study, we developed a simple Pd separation technique based on photoreduction with Xe lamp irradiation and applied the technique to a simulated HLW solution. The Pd recovery from a simulated HLW solution reached 50%, while 99% of the other 13 elements were removed. These results indicate that selective separation of Pd is achieved with the simplified irradiation procedure.
Konda, Miki; Horita, Takuma; Asai, Shiho; Matsueda, Makoto; Hanzawa, Yukiko; Saito, Kyoichi*; Fujiwara, Kunio*; Sugo, Takanobu*; Kameo, Yutaka
no journal, ,
no abstracts in English
Konda, Miki; Horita, Takuma; Asai, Shiho; Hanzawa, Yukiko; Saito, Kyoichi*; Fujiwara, Kunio*; Sugo, Takanobu*; Ishimori, Kenichiro; Kameo, Yutaka
no journal, ,
no abstracts in English
Horita, Takuma; Akimoto, Yuji*; Kikuchi, Hikaru*; Do, V. K.
no journal, ,
no abstracts in English