Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Coolability evaluation of debris bed on core catcher in a sodium-cooled fast reactor

Matsuo, Eiji*; Sasa, Kyohei*; Koyama, Kazuya*; Yamano, Hidemasa; Kubo, Shigenobu; Hourcade, E.*; Bertrand, F.*; Marie, N.*; Bachrata, A.*; Dirat, J. F.*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Discharged molten-fuel from the core during Core Disruptive Accident (CDA) could become solidified particle debris by fuel-coolant interaction in the lower sodium plenum, and then the debris could form a bed on a core catcher located at the bottom of the reactor vessel. Coolability evaluations for the debris bed are necessary for the design of the core catcher. The purpose of this study is to evaluate the coolability of the debris bed on the core catcher for the ASTRID design. For this purpose, as a first step, the coolability calculations of the debris beds formed both in short term and later phase have been performed by modeling only the debris bed itself. Thus, details of core catcher design and decay heat removal system are not described in this paper. In all the calculations, coolant temperature around the debris bed is a parameter. The calculation tool is the debris bed module implemented into a one-dimensional plant dynamics code, Super-COPD. The evaluations have shown that the debris beds formed both in short term and later phase are coolable by the design which secures sufficient coolant flow around the core catcher located in the cold pool.

Journal Articles

ASTRID nuclear island design; Update in French-Japanese joint team development of decay heat removal systems

Hourcade, E.*; Mihara, Takatsugu; Dauphin, A.*; Dirat, J.-F.*; Ide, Akihiro*

Proceedings of 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) (CD-ROM), p.556 - 561, 2018/04

In the framework of the French-Japanese agreement signed in 2014, CEA, AREVA NP, JAEA, and MHI/MFBR is jointly performing components design of ASTRID such as Decay Heat Removal Systems (DHRS). This paper is giving an update concerning ASTRID DHR strategy with description of reference architecture evolution and project objectives. In particular, new developments were made for DHR during normal shutdown and role of Ex-Vessel system. A special focus is made on design process of automatic shutter to hydraulically connect Hot Plenum and cold plenum to enhance primary vessel natural convection.

Journal Articles

ASTRID nuclear island design; Advances in French-Japanese joint team development of decay heat removal systems

Hourcade, E.*; Curnier, F.*; Mihara, Takatsugu; Farges, B.*; Dirat, J.-F.*; Ide, Akihiro*

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1740 - 1745, 2016/04

In the framework of the French-Japanese agreement signed in 2014, CEA, AREVA NP, JAEA, and MHI/MFBR is jointly performing components design of ASTRID such as Decay Heat Removal Systems (DHRS). This paper is giving highlights of ASTRID DHRS current strategy. Focus is made on operating temperature diversification for in-vessel heat exchanger as well as core catcher coolability by an original features such as heat exchanger located within reactor cold pool, whose design was taken over by Japan team since 2014.

3 (Records 1-3 displayed on this page)
  • 1