Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hu, F.-F.*; Qin, T.-Y.*; Ao, N.*; Xu, P. G.; Su, Y. H.; Parker, J. D.*; Shinohara, Takenao; Shobu, Takahisa; Kang, G.-Z.*; Ren, M.-M.; et al.
Journal of Traffic and Transportation Engineering, 25(2), p.75 - 93, 2025/04
Rajeev, H. S.*; Hu, X.*; Chen, W.-L.*; Zhang, D.*; Chen, T.*; Kofu, Maiko*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Chen, A. Z.*; Johnson, G. C.*; et al.
Journal of the Physical Society of Japan, 94(3), p.034602_1 - 034602_14, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; Xu, P. G.; Parker, J. D.*; Shinohara, Takenao; Chen, J.*; Wu, S. C.*
Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08
Times Cited Count:2 Percentile:55.14(Mechanics)Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; Shobu, Takahisa; Wu, S. C.*
International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08
Times Cited Count:9 Percentile:93.27(Engineering, Mechanical)Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
Times Cited Count:3 Percentile:70.74(Materials Science, Multidisciplinary)Tripathi, V.*; Bhattacharya, S.*; Rubino, E.*; Benetti, C.*; Perello, J. F.*; Tabor, S. L.*; Liddick, S. N.*; Bender, P. C.*; Carpenter, M. P.*; Carroll, J. J.*; et al.
Physical Review C, 109(4), p.044320_1 - 044320_15, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)no abstracts in English
Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03
Times Cited Count:0 Percentile:0.00(Thermodynamics)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:2 Percentile:74.11(Physics, Nuclear)no abstracts in English
Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta
Energy Reports (Internet), 9, p.3661 - 3682, 2023/12
Times Cited Count:11 Percentile:64.37(Energy & Fuels)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:4 Percentile:20.33(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Tripathi, V.*; Bhattacharya, S.*; Rubino, E.*; Benetti, C.*; Perello, J. F.*; Tabor, S. L.*; Liddick, S. N.*; Bender, P. C.*; Carpenter, M. P.*; Carroll, J. J.*; et al.
Physical Review C, 106(6), p.064314_1 - 064314_14, 2022/12
Times Cited Count:4 Percentile:52.14(Physics, Nuclear)no abstracts in English
Doherty, D. T.*; Andreyev, A. N.; Seweryniak, D.*; Woods, P. J.*; Carpenter, M. P.*; Auranen, K.*; Ayangeakaa, A. D.*; Back, B. B.*; Bottoni, S.*; Canete, L.*; et al.
Physical Review Letters, 127(20), p.202501_1 - 202501_6, 2021/11
Times Cited Count:11 Percentile:64.24(Physics, Multidisciplinary)Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:5 Percentile:33.27(Astronomy & Astrophysics)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:60 Percentile:96.18(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Barzakh, A. E.*; Cubiss, J. G.*; Andreyev, A. N.; Seliverstov, M. D.*; Andel, B.*; Antalic, S.*; Ascher, P.*; Atanasov, D.*; Beck, D.*; Biero, J.*; et al.
Physical Review C, 99(5), p.054317_1 - 054317_9, 2019/05
Times Cited Count:15 Percentile:73.32(Physics, Nuclear)Dioguardi, A. P.*; Yasuoka, Hiroshi*; Thomas, S. M.*; Sakai, Hironori; Cary, S. K.*; Kozimor, S. A.*; Albrecht-Schmitt, T. E.*; Choi, H. C.*; Zhu, J.-X.*; Thompson, J. D.*; et al.
Physical Review B, 99(3), p.035104_1 - 035104_6, 2019/01
Times Cited Count:10 Percentile:42.34(Materials Science, Multidisciplinary)We present a detailed nuclear magnetic resonance (NMR) study of Pu in bulk and powdered single-crystal plutonium tetraboride (PuB
), which has recently been investigated as a potential correlated topological insulator. The
Pu NMR spectra are consistent with axial symmetry of the shift tensor showing for the first time that
Pu NMR can be observed in an anisotropic environment and up to room temperature. The temperature dependence of the
Pu shift, combined with a relatively long spin-lattice relaxation time (
), indicate that PuB
adopts a nonmagnetic state with gaplike behavior consistent with our density functional theory calculations. The temperature dependencies of the NMR Knight shift and
imply bulk gaplike behavior confirming that PuB
is a good candidate topological insulator.
Wu, P.*; Zhang, B.*; Peng, K. L.*; Hagiwara, Masayuki*; Ishikawa, Yoshihisa*; Kofu, Maiko; Lee, S. H.*; Kumigashira, Hiroshi*; Hu, C. S.*; Qi, Z. M.*; et al.
Physical Review B, 98(9), p.094305_1 - 094305_7, 2018/09
Times Cited Count:13 Percentile:49.03(Materials Science, Multidisciplinary)Using angle-resolved photoemission spectroscopy and inelastic neutron scattering, we have studied how electronic structures and lattice dynamics evolve with temperature in Na-doped SnSe.
Barzakh, A.*; Andreyev, A. N.; Cocolios, T. E.*; de Groote, R. P.*; Fedorov, D. V.*; Fedosseev, V. N.*; Ferrer, R.*; Fink, D. A.*; Ghys, L.*; Huyse, M.*; et al.
Physical Review C, 95(1), p.014324_1 - 014324_12, 2017/01
Times Cited Count:28 Percentile:87.55(Physics, Nuclear)Lopez-Martens, A.*; Henning, G.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.
EPJ Web of Conferences, 131, p.03001_1 - 03001_6, 2016/12
Times Cited Count:1 Percentile:41.81(Chemistry, Inorganic & Nuclear)Fission barrier height and its angular-momentum dependence have been measured for the first time in the nucleus with the atomic number greater than 100. The entry distribution method, which can determine the excitation energy at which fission starts to dominate the decay process, was applied to No. The fission barrier of
No was found to be 6.6 MeV at zero spin, indicating that the
No is strongly stabilized by the nuclear shell effects.
Truesdale, V. L.*; Andreyev, A. N.; Ghys, L.*; Huyse, M.*; Van Duppen, P.*; Sels, S.*; Andel, B.*; Antalic, S.*; Barzakh, A.*; Capponi, L.*; et al.
Physical Review C, 94(3), p.034308_1 - 034308_11, 2016/09
Times Cited Count:11 Percentile:60.04(Physics, Nuclear)