Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03
Times Cited Count:0 Percentile:0.00(Thermodynamics)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:1 Percentile:79.23(Physics, Nuclear)no abstracts in English
Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:2 Percentile:37.82(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Zhang, W. Q.*; Yamaguchi, Toshio*; Fang, C. H.*; Yoshida, Koji*; Zhou, Y. Q.*; Zhu, F. Y.*; Machida, Shinichi*; Hattori, Takanori; Li, W.*
Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02
Times Cited Count:2 Percentile:21.25(Chemistry, Physical)The ion hydration and association and hydrogen-bonded water structure in an aqueous 3 mol/kg RbCl solution were investigated at 298 K/0.1 MPa, 298 K/1 GPa, 523 K/1 GPa, and 523 K/4 GPa by neutron diffraction combined with EPSR methods. The second hydration layer of Rb and Cl becomes evident under elevated pressure and temperature conditions. The average oxygen coordination number of Rb (Cl) in the first hydration layer increases from 6.3 (5.9) ambient pressure to 8.9 (9.1) at 4 GPa, while decreasing coordination distance from 0.290 nm (0.322 nm) to 0.288 nm (0.314 nm). The orientation of the water dipole in the first solvation shell of Rb and a central water molecule is sensitive to pressure, but that in the first solvation shell of Cl does not change very much. The number of contact-ion pairs Rb-Cl decreases with elevated temperature and increases with elevated pressure. Water molecules are closely packed, and the tetrahedral hydrogen-bonded network of water molecules no longer exists in extreme conditions.
Doherty, D. T.*; Andreyev, A. N.; Seweryniak, D.*; Woods, P. J.*; Carpenter, M. P.*; Auranen, K.*; Ayangeakaa, A. D.*; Back, B. B.*; Bottoni, S.*; Canete, L.*; et al.
Physical Review Letters, 127(20), p.202501_1 - 202501_6, 2021/11
Times Cited Count:10 Percentile:66.31(Physics, Multidisciplinary)Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:2 Percentile:13.66(Astronomy & Astrophysics)Kong, L.*; Gong, J.*; Hu, Q.*; Capitani, F.*; Celeste, A.*; Hattori, Takanori; Sano, Asami; Li, N.*; Yang, W.*; Liu, G.*; et al.
Advanced Functional Materials, 31(9), p.2009131_1 - 2009131_12, 2021/02
Times Cited Count:29 Percentile:83.84(Chemistry, Multidisciplinary)The soft nature of organic-inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. However, these soft materials meanwhile feature a general characteristic that even a very mild pressure will lead to detrimental lattice distortion and weaken the critical light-matter interaction, thereby triggering the performance degradation. Here, using the methylammonium lead iodide as a representative exploratory platform, we observed the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable.
Zheng, Y.*; Xiao, H.*; Li, K.*; Wang, Y.*; Li, Y.*; Wei, Y.*; Zhu, X.*; Li, H.-W.*; Matsumura, Daiju; Guo, B.*; et al.
ACS Applied Materials & Interfaces, 12(37), p.42274 - 42284, 2020/09
Times Cited Count:25 Percentile:73.90(Nanoscience & Nanotechnology)Kaneko, Koji; Cheung, Y. W.*; Hu, Y.*; Imai, Masaki*; Tanioku, Yasuaki*; Kanagawa, Hibiki*; Murakawa, Joichi*; Moriyama, Kodai*; Zhang, W.*; Lai, K. T.*; et al.
JPS Conference Proceedings (Internet), 30, p.011032_1 - 011032_6, 2020/03
Ghys, L.*; Andreyev, A. N.; Huyse, M.*; Van Duppen, P.*; Antalic, S.*; Barzakh, A.*; Capponi, L.*; Cocolios, T. E.*; Cubiss, J.*; Derkx, X.*; et al.
Physical Review C, 100(5), p.054310_1 - 054310_13, 2019/11
Times Cited Count:14 Percentile:78.19(Physics, Nuclear)Barzakh, A. E.*; Cubiss, J. G.*; Andreyev, A. N.; Seliverstov, M. D.*; Andel, B.*; Antalic, S.*; Ascher, P.*; Atanasov, D.*; Beck, D.*; Biero, J.*; et al.
Physical Review C, 99(5), p.054317_1 - 054317_9, 2019/05
Times Cited Count:12 Percentile:73.96(Physics, Nuclear)Cheung, Y. W.*; Hu, Y. J.*; Imai, Masaki*; Tanioku, Yasuaki*; Kanagawa, Hibiki*; Murakawa, Joichi*; Moriyama, Kodai*; Zhang, W.*; Lai, K. T.*; Yoshimura, Kazuyoshi*; et al.
Physical Review B, 98(16), p.161103_1 - 161103_5, 2018/10
Times Cited Count:20 Percentile:66.05(Materials Science, Multidisciplinary)Cheung, Y. W.*; Hu, Y. J.*; Goh, S. K.*; Kaneko, Koji; Tsutsui, Satoshi; Logg, P. W.*; Grosche, F. M.*; Kanagawa, Hibiki*; Tanioku, Yasuaki*; Imai, Masaki*; et al.
Journal of Physics; Conference Series, 807(3), p.032002_1 - 032002_4, 2017/04
Times Cited Count:5 Percentile:82.37(Physics, Condensed Matter)Hu, D.*; Yin, Z.*; Zhang, W.*; Ewings, R. A.*; Ikeuchi, Kazuhiko*; Nakamura, Mitsutaka; Roessli, B.*; Wei, Y.*; Zhao, L.*; Chen, G.*; et al.
Physical Review B, 94(9), p.094504_1 - 094504_7, 2016/09
Times Cited Count:16 Percentile:57.39(Materials Science, Multidisciplinary)The temperature and energy dependence of spin excitations in an optimally P-doped BaFe(AsP) superconductor (T = 30 K) were studied by using inelastic neutron scattering. Experimental results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe(AsP) reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitation.
Truesdale, V. L.*; Andreyev, A. N.; Ghys, L.*; Huyse, M.*; Van Duppen, P.*; Sels, S.*; Andel, B.*; Antalic, S.*; Barzakh, A.*; Capponi, L.*; et al.
Physical Review C, 94(3), p.034308_1 - 034308_11, 2016/09
Times Cited Count:10 Percentile:58.76(Physics, Nuclear)Cheung, Y. W.*; Zhang, J. Z.*; Zhu, J. Y.*; Yu, W. C.*; Hu, Y. J.*; Wang, D. G.*; Otomo, Yuka*; Iwasa, Kazuaki*; Kaneko, Koji; Imai, Masaki*; et al.
Physical Review B, 93(24), p.241112_1 - 241112_5, 2016/06
Times Cited Count:16 Percentile:57.39(Materials Science, Multidisciplinary)Ye, M.*; Li, W.*; Zhu, S.-Y.*; Takeda, Yukiharu; Saito, Yuji; Wang, J.*; Pan, H.*; Nurmamat, M.*; Sumida, Kazuki*; Ji, F.*; et al.
Nature Communications (Internet), 6, p.8913_1 - 8913_7, 2015/11
Times Cited Count:57 Percentile:90.31(Multidisciplinary Sciences)Magnetically doped topological insulators are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. The realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)Te system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)Te using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial.
Takahashi, Masamitsu; Kozu, Miwa*; Sasaki, Takuo; Hu, W.*
Crystal Growth & Design, 15(10), p.4979 - 4985, 2015/10
Times Cited Count:14 Percentile:70.13(Chemistry, Multidisciplinary)Briggs, L.*; Monti, S.*; Hu, W.*; Sui, D.*; Su, G. H.*; Maas, L.*; Vezzoni, B.*; Partha Sarathy, U.*; Del Nevo, A.*; Petruzzi, A.*; et al.
Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.3030 - 3043, 2015/08
The International Atomic Energy Agency Coordinated Research Project, "Benchmark Analyses of an EBR-II Shutdown Heat Removal Test" is in the third year of its four-year term. Nineteen participants representing eleven countries have simulated two of the most severe transients performed during the Shutdown Heat Removal Tests program conducted at Argonne's Experimental Breeder Reactor II. Benchmark specifications were created for these two transients, enabling project participants to develop computer models of the core and primary heat transport system, and simulate both transients. In phase 1 of the project, blind simulations were performed and then evaluated against recorded data. During phase 2, participants have refined their models to address areas where the phase 1 simulations did not predict as well as desired the experimental data. This paper describes the progress that has been made to date in phase 2 in improving on the earlier simulations and presents the direction of planned work for the remainder of the project.
Van Beveren, C.*; Andreyev, A. N.; Barzakh, A.*; Cocolios, T. E.*; Fedorov, D.*; Fedosseev, V. N.*; Ferrer, R.*; Huyse, M.*; Kster, U.*; Lane, J. F. W.*; et al.
Physical Review C, 92(1), p.014325_1 - 014325_8, 2015/07
Times Cited Count:9 Percentile:53.71(Physics, Nuclear)