Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Defects in GaAs solar cells with InAs quantum dots created by proton irradiation

Sato, Shinichiro; Schmieder, K. J.*; Hubbard, S. M.*; Forbes, D. V.*; Warner, J. H.*; Oshima, Takeshi; Walters, R. J.*

Proceedings of 42nd IEEE Photovoltaic Specialists Conference (PVSC-42) (CD-ROM), 5 Pages, 2015/06

GaAs pn-junction diodes with embedded InAs quantum dots (QDs) are irradiated with protons and the generated deep level traps are investigated using Deep Level Transient Spectroscopy (DLTS). The results are compared to GaAs pn-junction diodes without QDs in order to identify the origin of the deep level traps. The fluence dependence of trap density is investigated, and it is shown that majority carrier traps induced by irradiation increase in proportion to the fluence whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. In addition, minority carrier traps in the QD layer and electron/hole emission from QD levels are investigated by various reverse bias and pulse voltage conditions.

Journal Articles

Impact of nanostructures and radiation environment on defect levels in III-V solar cells

Hubbard, S.*; Sato, Shinichiro; Schmieder, K.*; Strong, W.*; Forbes, D.*; Bailey, C. G.*; Hoheisel, R.*; Walters, R. J.*

Proceedings of 40th IEEE Photovoltaic Specialists Conference (PVSC-40) (CD-ROM), p.1045 - 1050, 2014/06

Baseline and quantum dot (QD) GaAs pn-junction diodes were characterized by deep level transient spectroscopy before and after both 1MeV electron irradiation and 140 keV proton irradiation. Prior to irradiation, the addition of quantum dots appeared to have introduced a higher density of defects at EC-0.75 eV. After 1 MeV electron irradiation the well-known electron defects E3, E4 and E5 were observed in the baseline sample. In the quantum dot sample after 1 MeV electron irradiation, defects near E3, E4 and EC-0.75 eV were also observed. Compared to the irradiated baseline, the QD sample shows a higher density of more complex E4 defect and a lower density of the simple E3 defect, while the EC-0.75 eV defect seemed to be unaffected by electron irradiation. As well, after proton irradiation, well known proton defects PR1, PR2, PR4' are observed. The QD sample shows a lower density PR4' defects and a similar density of PR2 defects, when compared to the proton irradiated baseline sample.

Journal Articles

Integrated modeling of steady-state scenarios and heating and current drive mixes for ITER

Murakami, Masanori*; Park, J. M.*; Giruzzi, G.*; Garcia, J.*; Bonoli, P.*; Budny, R. V.*; Doyle, E. J.*; Fukuyama, Atsushi*; Hayashi, Nobuhiko; Honda, Mitsuru; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Nuclear Fusion, 49(8), p.085035_1 - 085035_8, 2009/08

 Times Cited Count:170 Percentile:98.64(Physics, Fluids & Plasmas)

The pressure at the top of the edge transport barrier impacts fusion performance, while large ELMs can constrain material lifetimes. Investigation of intermediate wavelength MHD mode has led to improved understanding of the pedestal height and the mechanism for ELMs. The combination of high resolution diagnostics and a suite of stability codes has made edge stability analysis routine, and contribute both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Experimental studies of ITER demonstration discharges

Sips, A. C. C.*; Casper, T.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.

Nuclear Fusion, 49(8), p.085015_1 - 085015_11, 2009/08

 Times Cited Count:53 Percentile:87.31(Physics, Fluids & Plasmas)

Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for $$E$$$$_{axis}$$ $$<$$ 0.23-0.33 V m$$^{-1}$$ is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps $$l$$$$_{i}$$(3) $$<$$ 0.85 during the ramp up to $$q$$$$_{95}$$ = 3. A rise phase with an H-mode transition is capable of achieving $$l$$$$_{i}$$(3) $$<$$ 0.7 at the start of the FT. Operation of the H-mode reference scenario at $$q$$$$_{95}$$ $$sim$$ 3 and the hybrid scenario at $$q$$$$_{95}$$ = 4-4.5 during the FT phase is documented, providing data for the $$l$$$$_{i}$$(3) evolution after the H-mode transition and the $$l$$$$_{i}$$(3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept $$leq$$ 1.2 during the first half of the current decay, using a slow $$I$$$$_{p}$$ ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

Investigation of intermediate wavelength MHD modes has led to improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high resolution pedestal diagnostics and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard ELM regime, and for small ELM and ELM-free regimes. We further use the stability constraint on pedestal height to test models of the pedestal width, and self-consistently combine a simple width model with MHD stability calculations to develop a new predictive model (EPED1) for the pedestal height and width. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Experimental studies of ITER demonstration discharges

Sips, A. C. C.*; Casper, T. A.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

The ITER discharge evolution has been verified in dedicated experiments. Results show that breakdown at E$$<$$ 0.23-0.32 V/m is possible un-assisted (ohmic) for large devices like JET and attainable in all devices with ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. Operation of the H-mode reference scenario at q$$_{95}$$ = 3 and the hybrid scenario at q95=4-4.5 during the flat top phase was documented. Specific studies during the flat top phase provide data for the li evolution after the H-mode transition and the li evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation.

Journal Articles

Progress in the ITER physics basis, 2; Plasma confinement and transport

Doyle, E. J.*; Houlberg, W. A.*; Kamada, Yutaka; Mukhovatov, V.*; Osborne, T. H.*; Polevoi, A.*; Bateman, G.*; Connor, J. W.*; Cordey, J. G.*; Fujita, Takaaki; et al.

Nuclear Fusion, 47(6), p.S18 - S127, 2007/06

no abstracts in English

Journal Articles

Edge pedestal physics and its implications for ITER

Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Comparisons of small ELM H-mode regimes on the Alcator C-Mod and JFT-2M tokamaks

Hubbard, A. E.*; Kamiya, Kensaku; Oyama, Naoyuki; Basse, N.*; Biewer, T.*; Edlund, E.*; Hughes, J. W.*; Lin, L.*; Porkolab, M.*; Rowan, W.*; et al.

Plasma Physics and Controlled Fusion, 48(5A), p.A121 - A129, 2006/05

 Times Cited Count:15 Percentile:46.03(Physics, Fluids & Plasmas)

Dedicated experiments were carried out to compare the properties, fluctuation behaviour and access conditions of these regimes. A common shape was developed which scaled the plasma boundary except for aspect ratio. Scans of density and input power were carried out at several values of q95, so as to achieve ranges of dimensionless parameters. A striking similarity of access conditions was seen. These results suggest common physical mechanisms for the H-mode regimes, which do not depend critically on aspect ratio over this range. On the other hand, several differences in the details of the edge fluctuations were found, and will be reported. The effect of wall conditioning via boronization on the H-mode regimes will also be discussed.

Oral presentation

Radiation induced defects of III-V solar cells embedded with InAs quantum dots

Sato, Shinichiro; Schmieder, K.*; Hubbard, S.*; Forbes, D.*; Warner, J.*; Oshima, Takeshi; Walters, R.*

no journal, , 

GaAs pn-junction diodes with embedded InAs quantum dots (QDs) are irradiated with high energy protons and the generated deep level traps are investigated using Deep Level Transient Spectroscopy (DLTS). The results are compared to GaAs pn-junction diodes without QDs in order to identify the origin of deep level traps. In addition, the fluence dependence of trap density is investigated and it is shown that traps induced by irradiation increase in proportion to the fluence whereas EL2 trap, which appears before irradiation, is not affected by irradiation.

Oral presentation

Defect levels in GaAs p$$^+$$n diodes embedded with InAs quantum dot layers

Sato, Shinichiro; Schmieder, K.*; Hubbard, S.*; Forbes, D.*; Warner, J.*; Oshima, Takeshi; Walters, R.*

no journal, , 

III-V semiconductor devices embedded with quantum dots (QDs) are expected to be applied to next generation space solar cells. High density QDs and highly stacked QD layers without stacking fault are required in order to relaize QD solar cells, and have been obtained recently by using strain compensating technology. However, larger amount of defects are still incorporated into QD devices compared to single crystal devices and affect the device characteristics. In this study, we fabricated GaAs p$$^+$$n diode with 10 layers of InAs QDs by Metal Organic Vapor Phase Epitaxy (MOVPE) method and characterized defect levels in the devices using Deel Level Transient Spectroscopy (DLTS). The results were compared to reference samples which were GaAs p$$^+$$n diodes without InAs QDs. It was shown that unique electron and hole trap levels were found in the QD devices and thus we concluded that these traps should be reduced in order to improve the device quality.

12 (Records 1-12 displayed on this page)
  • 1