Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Imbeaux, F.*; Citrin, J.*; Hobirk, J.*; Hogeweij, G. M. D.*; Kchl, F.*; Leonov, V. M.*; Miyamoto, Seiji; Nakamura, Yukiharu*; Parail, V.*; Pereverzev, G. V.*; et al.
Nuclear Fusion, 51(8), p.083026_1 - 083026_11, 2011/08
Times Cited Count:38 Percentile:80.41(Physics, Fluids & Plasmas)Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10
In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from several tokamaks have been analyzed by means of integrated modeling in view of determining relevant heat transport models for these operation phases. The results of these studies are presented and projections to ITER current ramp-up and ramp-down scenarios are done, focusing on the baseline inductive scenario (main heating plateau current of 15 MA). Various transport models have been tested by means of integrated modeling against experimental data from ASDEX Upgrade, C-Mod, DIII-D, JET and Tore Supra, including both Ohmic plasmas and discharges with additional heating/current drive. With using the most successful models, projections to the ITER current ramp-up and ramp-down phases are carried out. Though significant differences between models appear on the electron temperature prediction, the final q-profiles reached in the simulation are rather close.
Sips, A. C. C.*; Casper, T.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.
Nuclear Fusion, 49(8), p.085015_1 - 085015_11, 2009/08
Times Cited Count:56 Percentile:86.97(Physics, Fluids & Plasmas)Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for
0.23-0.33 V m
is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps
(3)
0.85 during the ramp up to
= 3. A rise phase with an H-mode transition is capable of achieving
(3)
0.7 at the start of the FT. Operation of the H-mode reference scenario at
3 and the hybrid scenario at
= 4-4.5 during the FT phase is documented, providing data for the
(3) evolution after the H-mode transition and the
(3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept
1.2 during the first half of the current decay, using a slow
ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.
Sips, A. C. C.*; Casper, T. A.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.
Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10
The ITER discharge evolution has been verified in dedicated experiments. Results show that breakdown at E 0.23-0.32 V/m is possible un-assisted (ohmic) for large devices like JET and attainable in all devices with ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. Operation of the H-mode reference scenario at q
= 3 and the hybrid scenario at q95=4-4.5 during the flat top phase was documented. Specific studies during the flat top phase provide data for the li evolution after the H-mode transition and the li evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation.
Kondoh, Takashi; Richards, R. K.*; Hutchinson, D. P.*; Sugie, Tatsuo; Costley, A. E.*; Miura, Yukitoshi; Lee, S.*
Proceedings of 30th EPS Conference on Controlled Fusion and Plasma Physics (CD-ROM), 4 Pages, 2003/07
In order to understand the behavior of alpha-particles which are the dominant heat source in a burning plasma, it is necessary to measure the spatial distribution of the number of the alpha-particles and their energy spectrum. A collective Thomson scattering (CTS) system based on a pulsed CO laser is being developed and is under consideration for alpha-particle measurements on ITER. Heating beam ions (E = 1 MeV) are normally co-injected and have a similar velocity with alpha-particles in ITER. The CTS measurement can not, in general, distinguish beam ions and alpha-particles which have the same velocity. A vertical scattering geometry to distinguish between beam ions and alpha-particles is proposed. Calculations have shown that the vertically viewing CTS can resolve counter-travelling alphas without being masked by beam ions. Preliminary design of a beam line and a receiver system with the vertical scattering geometry has been developed. A proof-of-principle test on the CTS system using the JT-60U plasma is being conducted.
Kondoh, Takashi; Miura, Yukitoshi; Lee, S.*; Richards, R. K.*; Hutchinson, D. P.*; Bennett, C. A.*
Review of Scientific Instruments, 74(3), p.1642 - 1645, 2003/03
Times Cited Count:20 Percentile:67.63(Instruments & Instrumentation)Measurements of energy spectrum and density profile of confined alpha-particles are required for ITER. Several methods have been proposed, however, a measurement technique hasn't been established yet. A collective Thomson scattering (CTS) system based on a pulsed CO laser is being developed to demonstrate feasibility of alpha-particle diagnostics for ITER. The pulse laser (15J, 1
m, 0.6
m) and a wide band (~ 8GHz) heterodyne receiver with a quantum-well infrared photodetector (QWIP) have been developed and installed in the JT-60U tokamak. Stray light is reduced by a notch filter with hot CO
gas. Heterodyne receiver is absolutely calibrated using large area blackbody radiation source. Scattered signal from JT-60U plasma has not detected because of electrical noise originated from discharge of the pulsed laser and stray signal caused by impurity of the spectrum of the pulsed laser.
Kondoh, Takashi; Lee, S.; Hutchinson, D. P.*; Richards, R. K.*
Review of Scientific Instruments, 72(1), p.1143 - 1146, 2001/01
Times Cited Count:13 Percentile:58.87(Instruments & Instrumentation)no abstracts in English
Kondoh, Takashi; Nagashima, Akira; ; Richards, R. K.*; Hutchinson, D. P.*; Moriyama, Shinichi; Morioka, Atsuhiko; Tobita, Kenji; Kusama, Yoshinori; V.G.Kiptily*
Proc. of 1998 Int. Congress on Plasma Physics, p.1478 - 1481, 1998/00
no abstracts in English